CHAPTER 1

SYNCHRONOUS
PROGRAMMING

Real-time computer systems must interact with the outside world on terms that are
dictated by events taking place there. The computations that are done in response
to those events must not only produce the correct results, but they must also pro-
duce those results at the right time. Unlike a real- ume system, the success of a
scientific or engmeermg cotnputation is rarely related To when the result appears,
although the user’s patience and total computing expenses are related to the
computation time. A further distinction in realtime computing is that the total
computing environment consists of many semi-independent tasks that must be syn-
chronized properly.

Many varieties of computers and systems qualify as “real-time.” In this text,
our concerns will focus on engineering systems in which there are interactions
between a computer and some form of physical system. There are also often
interactions with an operator. The physical system usually contains several meas-
uring devices, which the computer must interrogate to get information, and
several actuators, which receive signals from the computer to control their actions.
Some systems have only one or the other of sensors or actuators, while most have
both (Fig. 1.1). The computer (or computers) used can range from thumbnail
size to room size (microprocessors to superminis), but the basic techniques for
designing effective real-time systems are the same: careful conceptual design, sys-
tematic implementation, exhaustive validation, and thoughtful choice of software
and hardware development tools. A major focus here will be on the use of high-
level computing languages for implementation of real-time systems.




2 ' SYNCHRONOUSJJGRAMMING  CHAP. 1

actuations| png ineering |Measurements
o System

Computer -t

Figure 1.1

1.1 MOTOR SPEED CONTROL

We have chosen the control of electric motors as our theme. Motors are widely
used and appear in so many different kinds of engineering systems that they cross
virtually all disciplinary boundaries. When different methods of actuation and
speed and position measurement are constdered, motors also offer examples of
situations that are typical of almost any real-time system. Motor systems are also
easy and inexpensive to build in a laboratory, and so offer an excellent learning
environment. On the other hand, the programs developed in the course of
exploring the theme of motor control are generic to other control problems, and
could be applied to many of them with little or no change.

*  Asimple motor control system is shown schematically in Fig. 1.2. From the
point of view of real-time system design, the simplicity of the job, even for this very
simple-looking physical system, will depend on how much we demand of the com-
puter. If the analog-to-digital (A/D) and digital-to-analog (D/A) converters can
operate with little or no intervention from the computer, if the only interaction
with the operator takes place at the beginning and end of an experiment, and if
the algorithm chosen for computing the output signal to the power amplifier as a
function of the measured motor speed depends only on the most recent measure-
ment, then the real-time system will also be quite simple. With these restricdons,
we can embark on our first example. .

1.2 THE CONTROL ALGORITHM

At the heart of most realtime computation systems there are usually some key cal-
culations. This could be a trend analysis of incoming data, spectral analysis for
recognizing changes in system characteristics, generation of waveforms for system
excitation, or, in this case, computation of the actuation signal on the basis of the
measured motor velocity. Although these calculations are absolutely critical to
proper system operation, the actual amount of program code devoted to them is
usually embarrassingly small!

Conurol of motor speed is accomplished by increasing the voltage to the
power amplifier if the speed is oo low, and decreasing it if the speed is too high.
A stmple rule for doing this is to make the change in actuation voltage propor-
tional to the velocity error, the difference between the actual velocity and the



Sec. 1..' PROGHAM STRUCTURE . 3

Velocity
Sensar
@
{Voltage} {Voltage}
Power ]I
Amplifier
Analog-to
Tigital
Converter
DPigital-te
Aralog e (omputer
Converter
- Operator
Console
Figure 1.2
desired value
m=het e - (1.I)

where m is the controtler output, &, is the proportionality constant (“gain™), € is
the error -

e=r—u, (1.2

and ¢ is a constant bias that is applied to the output voltage, often to compensate
for steady loads such as gravity or friction. ris the desired (“reference”) voltage,
and v, is the motor speed (scaled to the same units as 7}.

1.3 PROGRAM STRUCTURE

The equations expressing the control algorithm, when coded for computer imple-
mentation, must be embedded in a program that will interact properly with the
system (motor) being controlled. If, in this case, the external environment is lim-
ited to a single motor, a relatively simple program structure emerges. Because the
calculation of the controller output, m, does not depend either implicitly or ex-



4 _ . : SYNCHRONCUS PROGRAMMING CHA_P. 1

plicitly on time, the strategy for the real-time portion of the program is to run the
control calculation as often as possible. The basic real-time constraint in this case
is whether the length of time required to complete one controller calculation
cycle is short enough to maintain effective control. If it isn't, the only solution is
to find some way to make it run faster, a more expensive processor, a better com-
piler, use of assembly language in key places, and so on.

" Real-time programs consist of sets of semi-independent modules, often called
tasks. Each of these tasks is 2 sequence of program instructions written in 2 stan-
dard programming language. To illustrate the structure of the tasks, we will use a
form of “pseudocode,” that is, free-form statements about actions to be taken, but
organized to ook very much like a program in one of the structured languages (C,
Pascal, etc.). The convention we will use is to identify program blocks by indenta-
tion, with no further beginning or end of block marker. No formal syntax will be
used for loops or conditionals; whatever form suits the need will be used. Blocks
that consist of functionally grouped. statements but do not require any formal
blocking will be set off with blank lines. No GO-TO’s will be used within tasks.

. The motor control outlined above makes a good first example because its
simple structure has only one task. That task has three parts: the beginning, it
which the user interaction and initialization activity takes place, the middle part,
which contains the real-time portion, and the final section, where performance
reports are made (the final section can be omitted). The full program could be
diagrammed as shown in Fig. 1.3, with each of the three sections represented as a
program block. (The details of how these program structures are implemented
with specific computers and compilers are given in the appendices in the form of
fully commented programs, with additional explanatory material if necessary.
These programs show the implementatien for the final program structure selected
for each of the problems.)

Get user input (gains, setpoint, number of iterations, ...)
Initialize I/O ports, internal control variables
For specified number of iterations:

Read the velocity

Compute the controller output

Send output to the motor

Report results

Figure 1.3



Sec. 1 ! PROGRAM STRUCTURE . 5

This structure is simple and will work, but leaves no control to the operator
once the parameters are sct. Particularly in laboratory environments, it is very
common to want to “play” with a system as a medans of understanding its behavior
and finding the best control parameters (“tuning” the gains). In that situation,
the user likes to make one change at a time, see its effect, then make another
change. An alternate structure o accommodate such repetitive activity would be
to make all actions depend on a user command. These actions would include
changing parameters, initializing, and initiating the actual conirol. This leads to
the following, more complex, but more useful structure (Fig. 1.4},

Main: R
Repeat continuously:
Get user command (single letter commands)
Interpret and execute the command
Command Interpreter: v

Execute block that matches the single letter command:
exit from program

set controller gain

set the setpoint {desired velocity)

control for specified number of iterations
initialize the system

other print an error message

g v o

Figure 1.4 . — T

The control module, initializing module, and results reporting module
{(which isn’t included in the menu) now become subsidiary to the command inter-
preter. Otherwise, they look very much like the version in Fig. 1.5.

Further protocol is required to establish the way in which information can be
passed to the various modules that are called by the command interpreter. Each
module can do its own prompting and ask for the data from the user, but that usu-
ally leads to a lack of uniformity in the user interface, particularly if all the
modules were not written by the same person or if they were writien at different
times. A simple solution to this is to put the information to be passed to the lower
level program on the same line as the command itself. When the command inter-
preter calls a function, it also passes the remainder of the line to it as an argument.
To specify the number of iterations for control, for example, the “g” command,
the user would type: :

g 50




6 SYNCHRONOU.DGHAMM!NG - CHAP.1

As long as the protocol is similar for each of the commands, i.e., one or more
numbers following the command letter, the user interface remains consistent.
Likewise, the programming necessary to decode the additional numbers is not too
difficult because almost all high-level computer languages provide for a format
decoding that works on an internal buffer of characters,

1.4 DEBUGGING: SIMULATING REAL-TIME

Debugging of real-time programs is a difficult problem because the computer and
the real world to which it is relating are operating asynchronously. This means
that it is often not possible to duplicate the situations that are causing problems.
This is in distinct contrast to debugging a computational program. In the latter
case, all the action takes place in the computer, which is a strictly sequential
machine, and, unique among engineering systems, will always duplicate its actions
exactly. Although debugging is still a major problem, the ability to debug by
repeatedly reproducing the same error is a boon!

We would like to take advantage of this property of computers as long as pos-
sible in debugging real-time problems. Extensive planning and program design
emain the main bulwarks against excessive debugging time, but some amount
of debugging always seems to be necessary. Before en tering the real-time phase of
~ operation, it would be nice to be reasonably sure that the computational part of
the program is correct. This can be done by operating the program with another
program (or program section) that simulates the real-time part of the system. The
extra work involved in producing the simulation will pay off handsomely in overall
productivity. It might also add some additional insight into the nature of the
problem leading to improved solution methods. -

At this stage, an advantage of using a high-level language is that with proper
choice of the language and compiler, it becomes possible to do the simulation
studies on one computer and then transport the prégram to a different computer
for reakime operation when the simulation studies are com plete. This could not
be done efficiently with assembly language programs because the languages differ
from one computer to another.

The structure of the real-time control module and the simulator are shown
in Fig.1.5. The simulator has two functions. It has to increment “time,” and it has
to compute the change in the controlled system that would take place during that

time. The interesting property of the simulated real-time environment is that it’

makes the control computer appear to have an infinitely fast computing speed.
For example, in this system, the control program must first read the value of the
velocity from the analog-to-digital converter, then compute the voltage 10 be sent
to the digital-to-analog converter for transmission to the motor’s power amplifier,
All of that computation takes a finite amount of time. There is some delay
between the time that the velocity measurement process is started and the time
that the new voltage command signal gets to the amplifier, This introduces a

ptce

I i



SEC. ’ DEBUGGING: SIMULATING REAL-TIME ’ . 7

certain amount of delay into the system, and that delay can affect the quality of
control. In the simulated system, however, “time,” that is, simulated time, is
suspended while the computation takes place. By breaking the process into finer
divisions, some of these effects can be simulated also; however, simulated time will
always stand sdll while the control computation is taking place.

Control:
For specified number of iterations
Read velocity instrument
Compute controller output
Send value to power amplifier
Simulate one increment in time
Simulaton:

Compute motor velocity change for this time step
Increment time

~ Figure 1.5

In most cases, since it is the computational validity that is being tested rather
than whether the particular control algorithm will successfully control the motor,
it is usually sadisfactory at this stage to substitute a very simple model of the system
under control. For the motor, the simplest useful model is of a pure rotational
inertia with no friction, no compliance in the drive train, and no lag in the power
amplifier. This can be expressed in differential equatio form as:

dv T

sy _ L 1.3

o m {(1.3)
where Tis the torque applied to the motor and m is its mass (rotaticnal inertia). A

simple approximation of this equation for computer solution is:
U(I+At)=v(£)+(—?:)At (1.4)
m

If the control sample time is long, it may be necessary to use a A that is a fraction
of the sample time and solve Eq. {1.4) several times to advance the solution one
full sample time. Fig. 1.6 shows the program structure for solving the differential
equation,

For niterations (where n= T/A#)
v=uv+ (T* At m)

Figure 1.6



8 : Smcunonougoemmmme CHAP. 1

The emphasis in this model of real-time is on producing an environment in
which the numerical validity of the program can be tested. Errors due to tming
conflicts must be debugged in actual real-time operation, To accomplish that, the
model of the control object (i.e., the motor) does not require a great deal of fidel- i
ity with the real thing. If the simulation were to be used to tune the control gains,
for example, a more aceurate model would have to be uwsed. In most cir-
cumstances, it would be better to use a simulation language for that purpose.

n el

1.5 INTEGER AND FLOATING POINT: REAL-TIME
CONSIDERATIONS

In the discussion thus far, we have not made any reference to the way in which
numbers are represented internally in the computer’s memory, or to the way in
which the basic arithmetical operations are carried out. These details ate of
critical importance to real-time programs. '

There are two common ways that numbers can be dealt with in computers: as
integers, or as floating point quantities. For computational purposes, the integer
representation includes positive and negative values (with zero usually counted as
positive), that is, signed integers. Floating point numbers, more properly called
scientific notation, are represented in two parts, a mantissz and an exponent, both
signed. The value of the number is the mantissa times the base of the number sys-
tem raised to the power given by the exponent: '

value = mantissa * pase™Po™ (1.5)

For ordinary numbers, the base is 10. In internal computer representations, the
base can be either 2 or 10, with 2 being more common in"gnigineering applica-
tions. A normalized floating point number is one for which the magnitude of the
mantissa is always within a range given by:

.

(base™) < mantissa < base” (1.6)

For decimal numbers, for example, a normalized mantissa might be constrained
to the range 0.1 £ mantissa < 1.

Both of these are finite precision representations. For the integers, the pre-
cision is expressed by the range of integer values that can be represented. Some
integer examples are: a 3-bit signed integer can represent numbers from —4 to +3;
an &bit integer can represent numbers from ~128 to +127; a 16-bit integer can
represent numbers from ~32,768 to +32,767; 2 32-bit signed integer can represent
-2,147,483,648. For integers, the precision is expressed as maximum positive and
maximum (absolute value) negative numbers. For floating point numbers, the
precision limitations are expressed as a number of significant digits for the
mantissa, and a maximum positive and negative integer value for the exponent.

By contrast, neither precision nor range is normally considered when ex-
pressing an engineering quantity. The normal assumption is that whatever

L PR 1 AR I SR N




SEC.’ INTEGER AND FLOA_TING POINT: REAL-TIME CONSIDERATIONS 9

computing instrument is used, it will have sufficient precision and range to deal
with the numbers involved. As a result, quantities in engineering units can have
vastly different ranges in order to use common units. The floating point number
representation falls closest to common usage. Using this representation, as long as
the quantity does not fall into the extreme edge of the'range of exponents avail-
able, the overall computing precision will be independent of the value. In most
cases, there will be some round-off error associated with every calculation.
_ Integer calculations, on the other hand, pose much greater computing
difficulty. The precision associated with an integer value depends on its magni-
tude. Small (absolute value) numbers have very low precision, measuring preci-
sion in an intuitive way as percentage change required to move from the current
value to the next allowable value. For an integer of value 1, for example, it takes a
100% change to get to its nearest neighbors. All quantities used must therefore be
scaled if integer representations are to be used. The internal vatue will be related
to the actual value (in engineering units) by an arbitrary scale factor. The scaling
process must compromise between two problems: (1) to maintain sufficient preci-
sion; and {(2) to avoid exceeding the allowable range, even in intermediate results
of calculations. For example, the controller output equation requires that the
error be multiplied by the proportional gain and then added to the bias'to get the
controller output value. If all quantities are scaled for integer arithmetic, they will
all have approximately the same range of allowable values. For many control
applications, that will mean that the conurol gain will be a number near unity.
That is precisely the range, however, where integer arithmetic has its least preci-
sion, and so will not allow for fine tuning the controller’s gain. To avoid that, the
gain can be represented as a ratio of numbers, so the calculation becomes:

outprit = (Ryym *ervor) / Ry + bigs ... (1.7)

The position of the parentheses in this calculation is not arbitrary; the
parentheses control the computing order. The multiplication must be done
before the division so that the round-off error will be minimized. If, for example,
ko, ervor, and kg, are all about the same magnitude, if the division were done
first, the result would be near unity and all precision would be lost. On the other
hand, the scaling of the problem must be done in such a way that the product,
ko ¥ervor, does not ever exceed the integer range. If it does, in most cases the
result will have a very large error and, often, will have the opposite sign of the true
product. .

Floating point is clearly much easier to work with. Except for extreme cases,
engineering units can be used directly with no problems of precision or range.
The catch is that floating point is much slower in computing time than integer, as
much as 100 times slower, or, alternatively, to get computing times for floating
point even close to integer times (but usually still slower) requires the use of addi-
tional computing hardware that is quite expensive.

The suggested procedure for approaching the integer/floating point deci-
sion is to start in the simulated real-time maode using floating point. Because




10 SYNCHRONOUS .SRAMMING CHAP, 1

scaling is almost never required for programs using floating point numeric
representation, the validation and debugging can proceed without the need to
worry about scaling. Because time is being simulated, the computing time is not a
factor either. When this step is complete, a set of time tria_Is can be made to find
out the execution time for the key modules in the program (some compilers pro-
vide links to “profilers” that make it very easy to get these statistics). If the perfor-
niance is within the system specifications, it may be possible to leave the floating
point in place and proceed with the system development. If the performance is
close to specification, it might be possible to identify one or two key modules and
recode them for integer calculation, leaving the rest of the program intact. If,
however, it appears that integer calculation will be necessary throughout the pro-
gram, the simulated real-time systern can be used to great advantage in doing the
conversion,

The first step in the conversion is to decide what class of integer to use. All
processors have a “most natural” word size, that is, the number of bits that can be
processed in paraliel. This determines the natural integer precision for that pro-
cessor. For microprocessor systems, the most comimon are 8bit and 16-bit word
sizes. Eightbit precision means that the integer number range is —128 to +127
(for a given word size, there are a total of 2" possible numbers, where n is the word
size). This range is inadequate for most control-type problems. Sixteen-bit preci-
sion implies a range of -32,768 to 32,767. This range is adequate for many control
problems, but scaling must be done very carefully to preserve precision and avoid
overflows. The next most common integer size is 32-bit, providing a range of
approximately +2.15 x 10°. This range is large enough to make the
problem of scaling for specified precision while avoiding overflow relatively simple
for most control tasks.

The use of a high-level language insulates the programyner. from the details
of how the arithmetic is implemented on a specific processor. Any processor can
implement arithmetic operations with any desired precision level, at the cost of
increased computational time. In making the choices, therefore, it is important 1o
know the characteristics of the computer to know what precision level is likely to
work well. Most processors implement some arithmetic operations at one level
above their most natural level. Eightbit processors have some 16-bit operations
and 16-bit processors have some 32-bit operations. Most compilers allow at least
limited 8-bit operations, and full 16- or 32-bit integer arithmetic,

Using a combination of the overall desired precision level and the charac
teristics of the processor in use (or the target processor if the simulation is being
run on a computer different than the one that will actually be used for control), a
first choice can be made for the integer arithmetic precision level. If possible, the
choice should be the most natural and therefore most efficient integer mode of
the target computer. Using a high-level language, changes can easily be made to
other modes, but using a larger word size than the natural size will cause a
significant computing time penalty. Before changing all of the program variable
declarations, however, the original, floating point version of the program should

10

S X W AR T PP R

e LR i




Sec. . RUNNING IN REAL-TIME . 11

be “instrumented” with print statements to give the values of internal variables and
intermediate computation results throughout the program. This might require
breaking program statements into several parts in order to get at the intermediate
results,

At this point, the simulated real-time program will be turned into a simulated
integer arithmetic program. This is done by scaling all of the variables as if they
were integers, but leaving them in floating point form. The program should then
be run over as wide a range of operating conditions as possible, recording all of

-the data from the “print” statements that have been introduced. This data is used
primarily to check that no overflows occur anywhere in the program, for any of iis
operating ranges. The overall results can be compared with the original floating
point simulation pregram to make sure that overall precision requirements are
being met.

The final step in the integer conversion is the actual substitution of new
declarations for all the appropriate variables. With the integer mode simulation
already done, there should be few further conversion problems. The “instru-
mented” version of the program can be run to verify the intermediate and final
results,

1.6 RUNNING IN REAL-TIME

The final version of the program, either integer or floating point, is now ready for
real-time operation. For this motor control problem, the changes that must be
made are: {1} Remove the simulated motor module; {2) Insert a function to read
the analog-to-digital converter; and (3) Insert a function to send results to the
digitak-te-analog converter, - -

A/D converters typically are avallable with conversion , word widths of 8 to 16
bits, with 8, 10, and 12 bits being the most common. The output of the converter
is an integer, so the same scaling conditions discussed above in connection with
integer variables apply to it. The conversion precision is usually chosen on the
basis of problem requirements since the measurement input will be a primary
precision-limiting step. The narrower the conversion word, the cheaper and faster
the converter will be. Once a conversion precision has been chosen, the voltage
range at the input to the converter must be set so that the full range of the con-
verter is used. This is done by setting gains in the analog circait at the input to the
converter or in the converter iself. The A/D converter function used in the simu-
lated real time studies should have had the same conversion factor (motor speed
-> voltage -> converter output) as the real converter, so the program ranges and
scaling factors should not be affected by the change to a real A/D converter.

Operating the converter requires consideration of multiplexing and speed of
conversion. In order to save cost, A/D converters are often multiplexed, that is,
an electronic switch is placed ahead of the converter so that it can be attached to
any of a number of different signals. The conversion speed is a factor because the

11




12 . SYNCHHONOU! !FIOGFIAMMING CHAP. t _

program must wait, or do something else, while the conversion is taking place.
Many converters can complete a conversion in less than 100 microseconds, so it is
usually not worth trying to do anything else in that time. The logic for getting a
value from a specified multiplexor channel is shown in Fi ig. 1.7,

Get A/D value:

' Set mulgplexor channel
Start the conversion
Wait for conversion to finish
Read the result

Figure 1.7

Digital-to-analog converters (D/As) are much easier to use than A/Ds. No
multiplexor is involved and the conversion is done very quickly. The programming
required is just sending a value to the D/A’s output port. The A/D and D/A
modules should be coded and tested separately. With these modules installed in
place of the realtime simulation functions, the program is ready 10 control an
actual motor. The sample time that the controller will achieve depends entirely
on the speed with which the computer can make a full cycle through the program.,
This is most easily checked by using an oscilloscope to’ measure the width of the
“staircase” on the D/A output,

Functional testing can now begin to check that the control algorithm is
working properly and then to tune the controller gains.

- . .

12




Se_c‘ 1.8 THE € LANGUAGE STANDARD ) 13

INTRODUCTION TO EXAMPLE
PROGRAMS

1.7 ABOUT EXAMPLE PROGRAMS

The programs in this section are designed to provide examples of how one might
implement the concepts discussed in the various chapters. The programs are
designed to run on the ubiquitous IBM-PC, and almost all are written in the C pro-
gramming language. There are a few modules written in 808x assembly language,
but one cannot write real-time programs to control devices without having to
resort to assembly langnage ornice in a while. Not all readers are familiar with the C
programming language, and some of you may be just learning the language.
Because of this, the descriptive text for the example programs in thexearlier
chapters will devote more space to descriptions of language features. In addition
to describing the function and organization of the program modules, we also try
to point out why certain language features are used and why certain functions are
implemented the way they are. Although execution speed is always important, we
believe that good programming practices such as structured design, input check-
ing, data hiding, and encapsulation can be equally important, especially in a large
application. Such practices need not adversely affect performance, but we do
recognize that real-time process control programs operate under different condi-
tions from, say, a spreadsheet, and sometimes rules may have to be bent to meet
performance requirements. il

Almost all real-time control programs have to deal with hardware; it may be
an analog-to-digital converter, a paraliel port, or _amotor. Itisimpossible to write
stand-alone example programs that can accommiodate all the possible interface
devices that a reader may need. It is also not realistic to expect readers to obtain
the hardware setup required by the example programs. In view of these
difficulties, some of the example programs include a module that simulates the
external hardware environment. Simulation is a very useful tool for debugging
program logic and developing new applications where it may be difficult if not
impossible to run tests on the actual hardware, _

We hope that readers who are implementing computer-based real-time con-
trol projects will find these example programs useful as starting points or as
modules that can be incorporated into their applications.

1.8 THE C LANGUAGE STANDARD

At this time, the C programming language is undergoing a transition from the
informal de facto standard established by the book The C Programming Language by
Kernighan and Ritchie (commonly referred to as K&R), and the ANSI draft

13




o matill

14 SYMCHRONOU'OGHAMMNG CHAP. 1

standard proposed by the X311 commitiee. There are several new language
features in the draft standard, and many C compiler vendors have already imple-
mented them. Some of the features have been stable for quite some. time now and
are very unlikely to change in the future.

The example programs makes use of some ANSI C features such as the void
type and function prototyping. The woid type is used to declare functions that
do not return a value,! and as a generic pointer type, an absence that is sorely felt 3
in the old K&R standard. Function prototyping is a feature that allows a function’s E
return type and the type of its arguments to be declared before the function is
used or outside of the file where the function resides. This allows the compiler to
check if the correct number of arguments are passed to the function and if the
arguments are of the correct type.

e ko

1.9 COMPILERS

The example programs were compiled with Microsoft C, version 5.0, and linked
using the Microsoft linker, version 3.61. The code and compilation commands
suggested here are totally compatible with the version 4.00 compiler and the ver-
sion 3.51 linker. It is unlikely that you will have to modify the code in order to
compile the programs since we have tried to avoid compiler dependent features,
The few assembly language modules were assembled using the version 4.00 Micro-
soft MASM assembler.

it e

1.10 PROGRAMMING PRACTICES

Program erganization and certain progrirhming practices common to all the pro-
grams are described in this section.

1.10.1 FiLE MODULES

ol

The module concept organizes a program into groups of related functions. For  »
example, a device driver module for an analog-to-digital converter contains func-
tions that initialize and otherwise control the ADC, and maintains data required by
all the routines® in the module. The module provides a set of interface routines
that allows other routines outside of the module to set the channel and perform

B R

iy

i SR 210

IThis is known as a procedurein Pascal.

"We use the term routine to refer to both functions that retarn a value and those that do not. In
C, the term funclior is commonly used to denote both types of functions; a function in C is assumed to
return an integer unless declared otherwise,

14



SEc.1. PROGRAMMING PRACTICES . 15

analog-to-digital conversion. Routines outside of the module cannot call on rou-
tines or access data not specifically made visible outside of the module.® Thus, a
module is a sort of black box with a defined interface. '

The module concept encourages one to conceptualize the program as a col-
lection of functional blocks that communicate with other blocks through well
defined-interface routines. As long as the module interface is unchanged, its con-
tents can be replaced without affecting the rest of the program. Although this
may not seem important in small programs, large programs are very difficult to
manage and maintain unless some form of modular organization is used. This will
become obvious in the later chapters as the example programs increase in size and
complexity.

The module concept is central to the Modula-2 language, and 2 variant of it
is implemented in Ada as packages. Unfortunately, C does not directly support
modules, though many of the concepts can be implemented in C by treating a file
as a module. In C, a routine that is declared to be static can only be called by
name by other routines within the same file; it is not visible outside of the file.
Such routines can be thought of as being “private” to the module.

A data variable defined outside of any routine is visible to all routines. How-
evef, as with routines, the variable can be made to be visible only within a file in
which it is defined by declaring it to be static. Routines and variables outside of
the module can have the same name without fear of accidental name conflicts (2
particularly insidious type of bug).

How do we make the interface routines (and perhaps data) known to other
functions outside the module? The simplest way is by means of a header file de-
claring the names, return type, and arguments of the interface routines. Visible
routines and data are declared to be extern, which means that the code and data
are probably not in the current file, i.c., external to the current file. Thus, each
module has its own header file, and we have adopted the convention that the
header file has the same name as the module file, but with the .h extension
instead of the .c extension. Other program madules wishing to use the services of
a parucular module merely have to include the appropriate header file.

C automatically assumes that a routine returns an integer unless declared
otherwise. Thus, all functions that do not return integers should be declared
before they are called, preferably with a function prototype. Declaring a function
before it is used or defined is also known as a forward declaration. In the module
file, there is a section near the beginning of the file for forward declarations of
functions private to the module. Strictly speaking, forward declarations for private
routines should use the static keyword, but some compilers may not accept the use

*The term visible in this context means thai the itern can be referenced directly by name; a func-
tion is visible if it can be called by name, a datz variable is visible if it can be read and assigned-to by
name,

15




16 _ SYNCHAONOUS PROGRAMMING ~ CHAP. 1

of the static keyword in a forward declaration.? Because of this, we have avoided
the static keyword in forward declarations for private routines.

Function prototyping is a more advanced form of forward declaration that
not only declares the return type, but also the type and order of the function argu-
ments. This allows compilers to check that the correct types are being passed to
functions. Since not all compilers have implemented this feature yet, function
prototyping is only enabled if the symbol ANSI is defined.  The file modules in the
example programs are organized into sections:

header files and imported declarations
global data visible outside of the module
forward declarations

private data

interface or entry functions

private functions

- initalization functions

‘Grouping related items together makes it easier to locate specific items for
modification, and there are fewer chances of introducing bugs due to multiple
and possibly different declarations for the same item.

Each routine in the module is preceded by a short comment block de-
scribing the routine. The type of routine is indicated by the words PROCEDURE

or FUNCTION, used in the Pascal sense. This is followed by the name of the rou-

tine in capital letters; this makes it easier to search for the place where the routine
is defined using a program or text editor. The return tfpe and arguments are
described next. There is an optional REMARK section that describes any special
features or algorithm used in the routine. .-

1.10.2 THE ENVIRONMENT FILE—ENVIR.H

Many of the example program modules include a header file named envir.k. This
header file specifies the environment under which the program is compiled and
executed. This is useful if the program is to run on different computers or has to
be compiled by different compilers. This is not uncommon, especially in “embed-
ded systems,” as real-time control programs are often developed and debugged on
large computers or workstations and later transferred to the microcomputer that
actually controls the hardware. Code that depends on certain features of the
environment, such as the computer, operating system, or compiler can be isolated
and conditionally compiled using the information in the envir.A file.

We know of a compiler that quietly accepts static forward declarations, but generates incorrect
code!

16

b AR B et Vs 1 e

A R ke L - R .

v
4



Sec. 1’ PROGAAMMING PRAGTICES . " 17
1.10.3 INPUT AND OUTPUT PORTS—INOUT.H

Computers based on Intel CPUs, such as the IBM-PC family, have special instruc-
tions to access i/o ports, and most compiler vendors supply functions to read from
and write to i/o ports. Unfortunately, there is no consensus on the names of these
functions. To simplify matters, we have.chosen to use the function names #n() and
oui() for routines that read a byte from a port and write a byte to a port, respec-
tively. These names are mapped to the appropriate compiler library names by
macros defined in inout.k; here is an excerpt:

§if CIC86 /* Computer Innovations CB& */

tdefine in(port) inportb { (unsigned) {port))

#define out{port, value} sutpertb{{unsigned) {portl, value)
$endif '

#1f MICROSOFT /* Microsoft C Version 4.00 & 5.00 */
*define in(port} inp { {unsigned) {port}) .
$define out (port, wvalue) outp ( (unsigned) (port), value)
#endif o

-

1.10.4 FLOATS AND Douau-:s

C has two floating point types: float for single precision and double for double pre-
cision floating point types. For historical reasons, the C language specifies that
floats are always expanded into doubles in expressions. and when passed to a func-
tion.® The example program uses doubles rather than floats for floatirig point vari-
ables, as we feel that in most cases, the reduction in donversion overhead more
than compensates for the slight increase in storage requirement and data transfer
time. There is also another reason relating tg the use of function prototypes in
the proposed ANSI standard. The proposed standard in its current form allows
single precision calculations for greater speed without automatic expansion into
double precision. Function prototypes that declare arguments as floats may have
problems with functions that expect float type parameters to be expanded into
doubles. Using doubles for all floating point variables avoids this problem during
the transition from K&R C to ANSI C.

5The historical reason For this convention of automatically converting floats to doubles is that C
was developed on carly PDP-11 computers. Programs running on early PDP-11s cannot determine
whether the floating point unit is in single or double precision mode; this presents an obvious problem
for multi-tasking systems since the precision mode of the Roating point unit could have been changed
by another program. The solution the creators of C came up with was to always use double precision.

17



- - _
- . Y

CHAPTER 2

| TIME

The mathematical function used for the control algorithm in the previous chapter
made no reference to time, so the program could be run as often as the processor
was able to. This is very simple and convenient for programming, but unusual,
Most real-time programs require some synchronization with “real” time.- In this
chapter, we shall consider an algorithm that makes use of data sampled at known
instants of time. It is still the only task present, so synchronous programming can
still be used, but some mechanism must be added to determine time.

2.1 PROPORTIONAL PLUS INTEGRAL (P1) CONTROL

The proportional control algorithm has the disadvantage in that, when the error is
zero, its output is fixed by the constant bias term. 'In general, there will only be a
single setpoint for which the preset bias is correct. For all other setpoints, the ina-
bility of the controller to provide different biases for different setpoints will mean
that after all of the transient behavior has died away, the output will not be at its
desired value but will have some steady-state error. Whether or not this happens
depends on the nature of the behavior of the system under control. If we imagine
a frictionless motor, once it has reached its desired speed it will coast at that speed
forever if no energy is removed from the system. If a controller is built in such a
way that the control output represents torque applied to the motor, then maint-

. 41

18



42 . TIME  CHAP,2

enance of setpoint speed will not require any torque, and an offset bias of zero will
work forall setpoint values.

Even without violating the assumption of no friction, whether the system will
work satisfactorily with zero for an offset bias depends on the type of power
amplifier that is used. A power amplifier that controls voltage across the motor
will allow current to flow when its voltage is zero, thus dissipating energy and
causing the motor to slow down. A non-—ero bias voltage is needed to imaintain
speed, so, with only proportional (P) control, there will be a steady-state error in
speed. A power amplifier that controls the current flow to the motor will act very
much like 2 torque source, so will come closer to having no steady-state error. All
real systems have some dissipation, however, so even a current-controlled system
will have some steady-state offset,

Rather than use a2 constant bias voliage in the controller, the control algo-
rithm can be designed to automatically adjust its bias voltage to whatever level is
necessary to ensure that there is no steady-state error. This is done by substituting
a term that acts on accumulated error for the constant bias. This can be expressed
as an integral )

m=hje+kfeds - @1

As long as the error is not zero, the integral will continue to increase. When the

~ error finally reaches zero, the value of the integral will remain, providing the
needed bias to hold the error at zero. For computer control systems, the integral
is approximated as a summation

m=hye+k, Y E (2.2)

From an implementation point of view, it is simpler to separate the accumulation
process from the control output computation. This can be done with the general
form shown in Fig. 2.1. + :

error = setpoint - velocity
accumulation = accumulation + error
in = kp * error + ki ¥ accumulation

Figure 2.1

The rate at which the accumulation term builds up depends on how often
the process is sampled. It is thus necessary to control the timing of the sampling
process, so that the sampling is done uniformly, and at a specified interval. A
further point that must be considered is that the addition of the integral term (to
give a PI control) reduces the system stability margin. If the integral gain, k; is too
high, it is possible to produce unstable behavior. k; is therefore usually kept as
small as possible consisterit with reducing the error to zero in a reasonable amount
of time.

19



Sec. CLOCK IMPLEMENTATION ‘ 43
2.2 CLOCKS

To a computer, a clock is a device that generates a sequence of pulsés with a con-
stant time interval between the pulses. To “keep time,” it is necessary to count
each of the pulses and-keep track of the count. Within this context, there are
several ways of recording the passage of time. The clock/calendar model is 1o
maintain a record of “absolute” time. Absolute time, however, implies that the
count can go on forever, which, in a finite precision machine such as a computer,
can lead to difficulties in defining the means of storing the number. In ordinary
timekeeping, we switch from the clock to the calendar for long time periods, but
rarely maintain a precision of better that one second. For realtime problems, the
precision level of interest is usuafly somewhere between a microsecond (1079 sec)
and a millisecond (107 sec). Cumulatively keeping track of microseconds means
3.6x10* counts per hour! Since realtime computers can run continuously for
days, weeks, or even years, the bookkeeping problem is substantial. Furthermore,
use of such a large format number to keep track of time can use up significant
amounts of computing time if the time has to be updated frequently.

Fortunately, many real-time tasks only need to know relative time rather than
absolute time, so the model of an interval timer can be used instead of the
clock/calendar model. In these cases, the nature of the task is such that at the
time it is run, the interval to the next time it must run again is already known.
The interval timer is then set for that time, and when it runs out, the task is run
again.

A third view of time is the stopwatch model. In this case, an event will hap-
pen at some indeterminate time in the future, but, when that event happens,
something must be done (perhaps only record the time of the event). The interval
timer and stopwatch models do not have as severe a precision problem as the abso-
lute timekeeper, but there can still be problems with précision and word size. A
16-bit (unsigned) integer can keep track of 65535 counts. Even at a millisecond
precision level, that is only about one minute. 32-bit integers can keep track of
about 4 billion counts {4x10°} which is adequate for most problems, but dealing
with 32-bit integers can be slow for many computers.

2.3 CLOCK IMPLEMENTATION

The original source for the pulse train that is the fundamental imekeeper must be
a physical device, usuaily a crystal oscillator, but, if the accuracy and stability of a
crystal is not needed, it could be a tuned circuit. The rest of the clock can be
implemented in either hardware or software, depending on the precision and
duration requirements. When implemented in hardware, the basic pulse interval
is usually from around one microsecond to around one millisecond. Devices
called programmable clocks usually have several operating modes so that they can be
used in either interval timing mode or stopwatch (event detection) mode.

20




44 . TIME CHAP, 2

Programmable timers usually also allow for variable count rate by dividing the

basic pulse rate by a userspecified amount {every other pulse, every third, etc.).
Because they are hardware devices, the duration is limited by the word size of the
counter; 16-bits is common, but others are available.

Clock/calendar hardware clocks are also available, mainly for maintaining time
and date information for operating systems. They usually have much cruder preci-
sion and are not as useful for real-time applications as programmable clocks.

At the other end of the spectrum, if the pulse interval is in the range of a mil-

lisecond or more, it is possible to implement the rest of the clock entirely in -

software. Hardware solutions are necessary for faster pulse trains to avoid using a
large fraction of the computing time for the clock software. As pulse intervals get
down toward a microsecond, it becomes impossible for a computer to keep up at
all. Software solutions are much more flexible than hardware clocks because
changes in precision, word size, and so on, can all be taken care of with program-
ming changes. Mode changes and special needs for event detection can also be
accommodated more easily.

The program structure for an interval timer implemented in software is
shown in Fig. 2.2. The clock-set module is executed to start the interval timer by

presetting a counter to the desired number of “ticks.” Each pulse represents one -~
tick of the clock. The clock module is executed whenever a pulse from the clock is -

detected. The clock medule must also contain some means of communicating
with the other parts of the program that use the time information. This can be
done by providing a function that returns the current value of the counter.
Another function normally supplied returns a clock-done flag, a logic variable that

indicates whether the clock has run out yet. Its advantage is that its form is the -

same regardless of the means of implementing the clock, so programs using that

information do not have to “know” the form of the intemral-counter used in the

clock program,.

clockset(interval):
counter = interval * scaling-factor
clock-done = FALSE
turn on the pulse generator and
enable the detection circuitry
return

clock: (This module is called whenever a clock
pulse is detected)
counter = counter - 1
if(counter <= 0)
clock-done = TRUE
return

Figure 2.2

21

ot i

"
=7

b R AL S Rl et ,.MWM

o Fit 15

S, R s R TIHE T R e ik

e T e T

T e e T




Sec. 2.. UsING TIME IN CONTROL—PARALLEL PROCESSES 45

It would also be possible to make the counter and clock-done flag available
directly to programs as global variables. This method is less attractive, even
though it requires slightly less computing time, because it compromises the isola-
tion of the clock service module. Imagine, for example, 2 programming error
resulting in a statement that changed the value of thé clock counter in 2 module
that was only supposed to use the clock, not change jit. All other parts of the pro-
gram that use the clock would then operate improperly, implying that the error is
somewhere in the clock service functions when it is not. Careful modularization
and “protection” of variables that are local to a module can go a long way toward
more reliable and easy-to-debug programs. . -

The programming logic for using a hardware programmable timer is very
similar. The clock-set program must transmit the interval information to the timer
hardware and start it running. The maintenance of the count is done by the
hardware timer, so the only further software requirement is a function that can tell
if time has run out.

2.4 USING TIME IN CONTROL—PARALLEL PROCESSES

The primary interaction between the control program and the timekeeper is the
flag variable, clock-dofie, which is available by a function call. For the purpose of
designing the control program, it is useful to assume that time is being kept by a
process that is completely independent of the control program, and running
parallel with it. The parallel process assumption implies that nothing going on in
the control program will interfere with the timekeeping function, and no con-
straints on execution time have to be applied to the control program other than
the requirement that it be able to complete its work by the time of the next sam-
ple. With this structure in mind, the control program shown in Fig. 2.3 will behave
the same as_the control program developed for proportional control, except that
sampling and control will only take place at specified imes.

clock-set{sample-interval)

For number of iterations specified
Do control
Wait until clock-done = TRUE
clock-set(sample-interval)
(Reset the clock for the next
sample)

Figure 2.5

22



46 ' . TIME  CHAP.Z

One feature of this program is noted in the comment at the top of Fig. 2.3,
that is, the time interval must be entered in units of ticks. Although a seemingly
minor detail, this requirement makes the use of the high-level program dependent
on the details of the low-level implementation. To run the program, the user must
be aware of clock implementation information, Most users have no need for such
information, so a better implementation mright be to call the clock-set function
with the sample time in units of seconds (or, perhaps, milliseconds) and convert -
to ticks in clock-set. The decisions on how to best insulate the user from unneces-
sary detail must be made early in the program design cycle. Once they become
embedded, changes might have to be made throughout the program to alter the
level at which information can be accessed.

Such decisions, however, have a variety of consequences. In this case, the
conversion of sample interval from seconds to ticks normally would only have to
be done once, during the setup phase of the program. By moving that cenversion
to a lower level (in clock-set), the user is indeed insulated from that detail, but the
conversion must now be performed for every sample interval. Thus, convenience
and portability may affect efficiency. A further difficulty is in deciding what “con-
venience” really is. Users of packaged programs are constantly frustrated on the
one hand by features that are buried wo deeply in the program for them to

~change and, on the other hand, by an overwhelming choice of features and
parameters, which often interact with each other.

2.5 ACHIEVING PARALLELISM \

If the clock is implemented with a hardware timer, the parallel operation assumed
above is achieved naturaily. Suitable circuitry must be provided se that the clock =
can be set and interrogated. In afl other respects, though, the ciock and the com-
puter are independent devices. When the counting part of the clock is imple- %
mented in software, both the clock software and the control software must be run ’
in the same computer. Since the computer is a surictly sequential device, true
parallel operation cannot be achieved. If the computer is fast enough, however,
both tasks can be carried out with an appearance of concurrent operation even
though they run in sequence. If this is to be done in a manner that is “invisible” to
the control program, a facility must be available that can suspend the execution of
the control program whenever a pulse is detected, run the clock counting func-
tion, and then resume execution of the suspended program. This is called an
inlerrupt mechanism and is present on most microprocessors.

The interrupt provides for pseudo-parallel operation as long as the computa-
tion that takes place during the interrupt does not significantly interfere with the
background calculation. In most cases, this is accomplished by making the inter-
rupt routine (the foreground) short enough and infrequent enough so that the
appearance to the user is that the background calculation is just running on a
slightly stower processor.

i
o
L
ke

I,

A

23



Sec. 2.. INTERRUPT HARDWARE . _ a7

The mechanism of the interrupt is that the hardware device causing the
interrupt (the input port where the pulse train signal is connected in our case)
sends a signal to the processor requesting an interrupt. If the processor’s operat-
ing mode is such that the signal can be recognized, it initiates the interrupt by
suspending the execution of its current program and saving whatever internal pro-
cessor information is necessary to restart that task when the interrupt has been
completed. The processor then starts the execution of the foreground task, the
“clock” module described above. When the foreground task has completed its
work, the process is reversed. A signal is sent to the device that caused the inter-
rupt indicating that interrupt processing is complete, the saved information is
used to restore the processor state to where it was when the interrupt first
occurred, and thé background process is resumed. This sequerice of events is
illustrated in Fig. 2.4

1. Hardware device requests an interrupt

2. Processor recognizes request

3. Execution of existing task is continued to the end
of the current machine instruction

4. Internal processor status information is saved

5. Foreground task is started

6. Foreground task finishes

7. Background task’s status information is restored

8. Background resumes

Figure 2.4

2.6 INTERRUPT HARDWARE

There are three main functions that must be aecomplished by the interrupt con-
wrol hardware:

1. Maintain masking information to decide whether or not an interrupt request
should be honored,

2. Establish the priority of the current interrupt relative to already active inter-
rupts, and

3. Determine the identity of the interrupt (what device caused the interrupt}
and communicate the location {in memory) of the interrupt service function
to the processor {vectoring).

The hardware that is used to perform these functions is often separate from

the CPU, so it is possible to use different interrupt control schemes with the same
CPU hardware.

24




a8 _ . TIME  CHAP, 2

The communication between the interrupt control hardware and the CPU to
set the various modes, parameters, etc., is done through input and cutput ports.
Most interrupt controllers allow for several modes of operation; they can be com-
plex, and the operating instructions must be studied carefully'

The 3 functions described above, while always present in some form, are not
always implemented to the same degree of sophistication. Masking, for example,
implies the ability to selectively enable or disable individual interrupts. In simple
interrupt processors, there may only be a globat enable/disable present while oth-
ers may allow for control of groups of devices.

The priority function can also have several levels of implementation. The
simplest level disables all imérrupts as soon as an interrupt request has been
honored. This method gives all interrupts equal priority. Once the interrupt ser-
vice function starts, the decision can be made in software whether {or when) to
re-enable interrupts so that other interrupts can be allowed before processmg of
the current interrupt is complete. At the other end of the spectrum, a fully priori-
tized interrupt control maintains a sepamte priority for each interrupt. When an -
mterrupt service routine starts runiing, it sets a CPU register to indicate its operat-
ing priority level. If another interrupt device requests service, the priority of that
interrupt is compared to the priority level. If the requesting interrupt has a higher

_priority, its request is honored. Otherwise, it is held in abeyance.

" A middle, and fairly common, priority control establishes priorities with
groups of devices and stores the priority level information about the currenty .
operating interrupt. The operating priority may not be accessible from the CPU,.
so remains fixed at the level set by the device. In order for the priority control to
work, there must be appropriate mechanisms to signal to the interrupt controller -
that a particular interrupt service funcuon has completed 1l:s work so that that
priority level can be cleared, -

The simplest possible vectonng method is for all interrupts to cause execu-
tion of the same interrupt service routine. This leaves to the software the task of
determining the source of the mtermpt and then executing the associated service
function. This method requires a minimum of hardware, but is costly in computa-
tion time. It is not used frequently anymore, because interrupts are normally used
for servicing time-critical tasks. Dedicated interrupt request lines between the
interrupt controller and devices can be used to establish a time efficient comprom-
ise. There can be as many unique devices as there are wires provided for the inter-
connection. Beyond that, each wire must be shared. Because of the unique
connection, however, the interrupt controller can determine the identity of the
mterruptmg device very quickly and communicate the associated vector (i.e.,
memory address) to the CPU,

When a system has many devices, however, a more flexible method—a fully
vectored interrupt—is necessary. To achieve full vectorization, each individual
interrupt must be able to specify a unique vector. An interchange between
the interrupt controller and the device is often used for this purpose.
When the interrupt controller recogszS an interrupt, it sends a signal to the

25



Sec., SIGNAL {XIGNAL): A SOFTWAHE_ INTERRUPT GONTAOLLER 49

device asking for its interrupt vector. The device then sends the vector address to
the interrupt controller, which passes it on to the CPU. The interchange between
the interrupt controller and the device interface takes some time, but very much
less time than would be needed to do the same interchange in software.

2.7 XIGNAL: A SOFTWARE INTERRUPT CONTROLLER

" Interrupt hardware is usually complex. Many details must be attended to in order
to set up and use the interrupt controller. The “xignal” facility is a software pack-
age that, for almost all real-time problems, allows that setup to be done once, then
used for many programs in a way that makes the interrupts very simple to imple-
ment.

“Xignal” locks to the user like a fully vectored interrupt, except that com-
munication with it only requires knowledge of some code names for the available
interrupts. The name “xignal” is used to avoid conflicts with programs named “sig-
nal” that are part of several operating systems and compller packages. ‘Figure 2.5
shows a-sample of using “signal” to set up an interrupt using a clock (the syntax is
patterned after the “signal” facility of the UNIX operating system). The first call
shown will cause the function timerservice to be called whenever the clock inter-
rupts. The second call resets the interrupt hardware back to its original state -after
the real-time portion of the program is over.

xignal (SIGTMR, dmer-service)

xignal(SIGTMR, signal-defaul)

Figurt 25

A general purpose package such as “signal” (“xignal”) is never quite as time
efficient as a module written for a specific purpose, but it should be fast enough
for most needs.

26




