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Agenda

“ Motivation for ext4
“ Why fork ext4?
“ What's new in ext4?

“ Planned ext4 features




Motivation for ext4

“ 16 TB filesystem size limitation (32-bit block numbers)
* Second resolution timestamps
© 32,768 limit on subdirectories

“ Performance limitations




Why fork ext4

“ Many features require on-disk format changes

* Keep large ext3 user community unaffected

“ Allows more experimentation than if the work is done outside of
mainline

* Make sure users understand that ext4 is risky: mount -t ext4dev
“ Downsides
* bug fixes must be applied to two code bases

* smaller testing community

a



What's new in ext4

“ Ext4 was cloned and included in 2.6.19

“ Replacing indirect blocks with extents
“ Ability to address >16TB filesystems (48 bit block numbers)
“ Use new forked 64-bit JBD2
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Extents

* Indirect block maps are incredibly inefficient for large files
* One extra block read (and seek) every 1024 blocks
" Really obvious when deleting big CD/DVD image files

“ An extent is a single descriptor for a range of contiguous blocks
* a efficient way to represent large file

* Better CPU utilization, fewer metadata I1Os
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On-disk extents format

“ 12 bytes ext4_extent structure
* address 1EB filesystem (48 bit physical block number)
* max extent 128MB (15 bit extent length)
* address 16TB file size (32 bit logical block number)

a N
struct ext4_extent {
__le32 ee block; /* first logical block extent covers */
__lel6 ee_len; /* number of blocks covered by extent */

__lel6 ee_start_hi; /* high 16 bits of physical block */
_ le32 ee_start; /* low 32 bits of physical block */
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Extents tree

“ Up to 3 extents could stored in inode i_data body directly
“ Use a inode flag to mark extents file vs ext3 indirect block file
“ Convert to a B-Tree extents tree, for > 3 extents

“ Last found extent is cached in-memory extents tree
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48-bit block numbers

“ Part of the extents changes
» 32bit ee_start and 16 bit ee_start_hi in ext4 extent struct
“ Why not 64-bit
* 48-bit is enough for a 2**60 (or 1EB) filesystem
* QOriginal lustre extent patches provide 48-bit block numbers

* More packed meta data, less disk 10

* Extent generation flag allow adapt to 64-bit block number easily
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64-bit meta data changes

“ In kernel block variables to address >32 bit block number

* Super block fields: 32 bit -> 64 bit

“ Larger block group descriptors (required doubling their size)
“ extended attributes block number (32 bit -> 48 bit)




64-bit JBD2

“ Forked from JBD to handle 64-bit block numbers
“ Could be used for 32bit journaling support as well
“ Added JBD2 FEATURE_ INCOMPAT 64BIT




Testing ext4

“ Mount it as ext4dev

" mount -t ext4dev
“ Enabling extents

* mount -t ext4dev -0 extents

* compatible with the ext3 filesystem until you add a new file
“ ext4 vs ext3 performance

* improve large file read/rewrite/unlink

a



Large File Sequential Read &Rewrite Using FFSB
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New defaults for ext4

“ Features available in ext3, enable by default in ext4
“ directory indexing
“ resize inode

“ large inode (256bytes)




Planned new features for ext4

* Work-in-progress: patches available
* More efficient multiple block allocation
* Delayed block allocation
* Persistent file allocation

* Online defragmentation

* Nanosecond timestamps




Others planned features

“ Allow greater than 32k subdirectories

* Metadata checksumming

“ Uninitialized groups to speed up mkfs/fsck
“ Larger file (16 TB)

“ Extending Extended Attributes limit

* Caching directory contents in memory
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And maybe scales better?

“ 64 bit inode number
* challenge: user space might in trouble using 32bit stat()

“ Dynamic inode table

“ More scalable free inode/free block scheme
“ fsck scalability issue

“ Larger block size
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Multiple block allocation

“ Multiple block allocation

* Allocate contiguous blocks together
— Reduce fragmentation, extent meta-data and cpu usage
— Stripe aligned allocations
“ Buddy free extent bitmap generated from on-disk bitmap
* Status

» Patch available
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Delayed block allocation

“ Defer block allocation to write back time

* Improve chances allocating contiguous blocks, reducing fragmentation

“ Blocks are reserved to avoid ENOSPC at writeback time:

At prepare_write() time, use page_private to flag page need block
reservation later.

* At commit_write() time, reserve block. Use PG_booked page flag to
mark disk space is reserved for this page

“ Trickier to implement in ordered mode

A



Large File Sequential Write Using FFSB
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Persistent file preallocation

“ Allow preallocating blocks for a file without having to initialize them
* Contiguous allocation to reduce fragmentation
* Guaranteed space allocation
* Useful for Streaming audio/video, databases
* Implemented as uninitialized extents
* MSB of ee_len used to flag “invalid” extents
* Reads return zero
* Writes split the extent into valid and invalid extents

“ AP for preallocation
* Current implementation uses ioctl
& — EXT4_|0C_FALLOCATE cmd, the offset and bytes to preallocate



Online defragmentation

“ Defragmentation is done in kernel, based on extent

“ Allocate more contiguous blocks in a temporary inode

“ Read a data block form the original inode, move the corresponding
block number from the temporary inode to the original inode, and
write out the page

* Join the ext4 online defragmentation talk for more detail




Expanded inode

“ Inode size is normally 128 bytes in ext3

“ But can be 256, 512, 1024, etc. up to filesystem blocksize
“ Extra space used for fast extended attributes

" 256 bytes needed for ext4 features

* Nanosecond timestamps

" Inode change version # for Lustre, NFSv4




High resolution timestamps

“ Address NFSv4 needs for more fine granularity time stamps

“ Proposed solution used 30 bits out of the 32 bits field in larger
iInode (>128 bytes) for nanoseconds

“ Performance concern: result in additional dirtying and writeout
updates

* might batched by journal




Unlimited number of subdirectories

“ Each subdirectory has a hard link to its parent

“ Number of subdirectories under a single directory is limited by type
of inode's link count(16 bit)

“ Proposed solution to overcome this limit:

* Not counting the subdirectory limit after counter overflow,

storing link count of 1 instead.




Metadata checksuming

* Proof of concept implementation described in the Iron Filesystem
paper (from University of Wisconsin)

" Storage trends: reliability and seek times not keeping up with
capacity increases

“ Add checksums to extents, superblock, block group descriptors,
iInodes, journal
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Uninitialized block groups

“ Add flags field to indicate whether or not the inode and bitmap
allocation bitmaps are valid

“ Add field to indicate how much of the inode table has been
initialized

“ Useful to create a large filesystem and fsck a not-very-full large

filesystem
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Extend EA limit

“ Allow EA data larger than a single filesystem block
“ The last entry in EA block is reserved to point to a small number of

extra EA data blocks, or to an indirect block




ext3 vs ext4 summary

ext3 ext4dev
filesystem limit 16TB 1EB
file limit 2TB 16TB
limit 2**32 2**32
default inode size 128 bytes 256 bytes
block mapping indirect block map extents
time stamp second nanosecond
sub dir limit 2**16 unlimited
EA limit 4K >4K
preallocation in-core reservation for extent file
deframentation No yes
directory indexing disabled enabled
delayed allocation No yes
multiple block
allocation basic advanced



Getting involved

* Mailing list: linux-ext4@vger.kernel.org

“ latest ext4 patch series
ftp://ftp.kernel.org/pub/linux/kernel/people/tytso/ext4-patches

* Wiki: http://ext4.wiki.kernel.org

» Still needs work; anyone want to jump in and help, talk to us
“ Weekly conference call; minutes on the wiki
* Contact us if you'd like dial in

“ IRC channel: irc.oftc.net, /join #linuxfs
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The Ext4 Development Team

“ Alex Thomas “ Andrew Morton

“ Andreas Dilger “ Laurent Vivier

“ Theodore Tso “ Alexandre Ratchov

“ Stephen Tweedie “ Eric Sandeen

* Mingming Cao “ Takashi Sato

* Suparna Bhattacharya “ Amit Arora

“ Dave Kleikamp * Jean-Noel Cordenner
“ Badari Pulavarathy * Valerie Clement

“ Avantikia Mathur
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Conclusion

* Ext4 work just beginning

* Extents merged, other patches on deck
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