.||IH

‘ IBM Linux Technology Center

Ext4: The Next Generation of
Ext2/3 Filesystem

Mingming Cao
Suparna Bhattacharya
Ted Tso

© 2007 IBM Corporation

Agenda

“ Motivation for ext4
“ Why fork ext4?
“ What's new in ext4?

“ Planned ext4 features

Motivation for ext4

“ 16 TB filesystem size limitation (32-bit block numbers)
* Second resolution timestamps
© 32,768 limit on subdirectories

“ Performance limitations

Why fork ext4

“ Many features require on-disk format changes

* Keep large ext3 user community unaffected

“ Allows more experimentation than if the work is done outside of
mainline

* Make sure users understand that ext4 is risky: mount -t ext4dev
“ Downsides
* bug fixes must be applied to two code bases

* smaller testing community

a

What's new in ext4

“ Ext4 was cloned and included in 2.6.19

“ Replacing indirect blocks with extents
“ Ability to address >16TB filesystems (48 bit block numbers)
“ Use new forked 64-bit JBD2

Ext2/3 Indirect Block Map

1_data
0 20 -
L2003
11 211 o 1236
12212 - 1238

13 -
14 _

1 direct block
1 indirect block

double indirect block
& triple indirect block

disk blocks
0

— > 200
> 201
— - 213
N

~ 1239
8

4 65533

Extents

* Indirect block maps are incredibly inefficient for large files
* One extra block read (and seek) every 1024 blocks
" Really obvious when deleting big CD/DVD image files

“ An extent is a single descriptor for a range of contiguous blocks
* a efficient way to represent large file

* Better CPU utilization, fewer metadata I1Os

logical length physical

0 1000 200

a

On-disk extents format

“ 12 bytes ext4_extent structure
* address 1EB filesystem (48 bit physical block number)
* max extent 128MB (15 bit extent length)
* address 16TB file size (32 bit logical block number)

a N
struct ext4_extent {
__le32 ee block; /* first logical block extent covers */
__lel6 ee_len; /* number of blocks covered by extent */

__lel6 ee_start_hi; /* high 16 bits of physical block */
_ le32 ee_start; /* low 32 bits of physical block */

1_data

header

1000

200

2000

6000

Extent

Map

disk blocks

200
201

1199

6000
6001

6199

Extents tree

“ Up to 3 extents could stored in inode i_data body directly
“ Use a inode flag to mark extents file vs ext3 indirect block file
“ Convert to a B-Tree extents tree, for > 3 extents

“ Last found extent is cached in-memory extents tree

leaf node disk blocks
Extent Tree 4 \

Va I g
Y, I

1_data index node ~ =

v -

=
\
\

root | -

L)
LY
R
—_—

extents

I extents index

node header

48-bit block numbers

“ Part of the extents changes
» 32bit ee_start and 16 bit ee_start_hi in ext4 extent struct
“ Why not 64-bit
* 48-bit is enough for a 2**60 (or 1EB) filesystem
* QOriginal lustre extent patches provide 48-bit block numbers

* More packed meta data, less disk 10

* Extent generation flag allow adapt to 64-bit block number easily

a

64-bit meta data changes

“ In kernel block variables to address >32 bit block number

* Super block fields: 32 bit -> 64 bit

“ Larger block group descriptors (required doubling their size)
“ extended attributes block number (32 bit -> 48 bit)

64-bit JBD2

“ Forked from JBD to handle 64-bit block numbers
“ Could be used for 32bit journaling support as well
“ Added JBD2 FEATURE_ INCOMPAT 64BIT

Testing ext4

“ Mount it as ext4dev

" mount -t ext4dev
“ Enabling extents

* mount -t ext4dev -0 extents

* compatible with the ext3 filesystem until you add a new file
“ ext4 vs ext3 performance

* improve large file read/rewrite/unlink

a

Large File Sequential Read &Rewrite Using FFSB

Throughput(MB/sec)

180

166.3

160

140

120

100 -

80

60 -

40

20

102.7

Sequential Read

100

I ext3
[ext4
M JFs
LIxFs

Sequential re-write

New defaults for ext4

“ Features available in ext3, enable by default in ext4
“ directory indexing
“ resize inode

“ large inode (256bytes)

Planned new features for ext4

* Work-in-progress: patches available
* More efficient multiple block allocation
* Delayed block allocation
* Persistent file allocation

* Online defragmentation

* Nanosecond timestamps

Others planned features

“ Allow greater than 32k subdirectories

* Metadata checksumming

“ Uninitialized groups to speed up mkfs/fsck
“ Larger file (16 TB)

“ Extending Extended Attributes limit

* Caching directory contents in memory

a

And maybe scales better?

“ 64 bit inode number
* challenge: user space might in trouble using 32bit stat()

“ Dynamic inode table

“ More scalable free inode/free block scheme
“ fsck scalability issue

“ Larger block size

a

Multiple block allocation

“ Multiple block allocation

* Allocate contiguous blocks together
— Reduce fragmentation, extent meta-data and cpu usage
— Stripe aligned allocations
“ Buddy free extent bitmap generated from on-disk bitmap
* Status

» Patch available

a

Delayed block allocation

“ Defer block allocation to write back time

* Improve chances allocating contiguous blocks, reducing fragmentation

“ Blocks are reserved to avoid ENOSPC at writeback time:

At prepare_write() time, use page_private to flag page need block
reservation later.

* At commit_write() time, reserve block. Use PG_booked page flag to
mark disk space is reserved for this page

“ Trickier to implement in ordered mode

A

Large File Sequential Write Using FFSB

110 104.3

100

91.9 893

90

80

707

M ext3
[ext4+del+mbl
M Jrs
TxFs

60 -

50

40

Throughput(MB/sec)

30

20 7

Sequential write

Persistent file preallocation

“ Allow preallocating blocks for a file without having to initialize them
* Contiguous allocation to reduce fragmentation
* Guaranteed space allocation
* Useful for Streaming audio/video, databases
* Implemented as uninitialized extents
* MSB of ee_len used to flag “invalid” extents
* Reads return zero
* Writes split the extent into valid and invalid extents

“ AP for preallocation
* Current implementation uses ioctl
& — EXT4_|0C_FALLOCATE cmd, the offset and bytes to preallocate

Online defragmentation

“ Defragmentation is done in kernel, based on extent

“ Allocate more contiguous blocks in a temporary inode

“ Read a data block form the original inode, move the corresponding
block number from the temporary inode to the original inode, and
write out the page

* Join the ext4 online defragmentation talk for more detail

Expanded inode

“ Inode size is normally 128 bytes in ext3

“ But can be 256, 512, 1024, etc. up to filesystem blocksize
“ Extra space used for fast extended attributes

" 256 bytes needed for ext4 features

* Nanosecond timestamps

" Inode change version # for Lustre, NFSv4

High resolution timestamps

“ Address NFSv4 needs for more fine granularity time stamps

“ Proposed solution used 30 bits out of the 32 bits field in larger
iInode (>128 bytes) for nanoseconds

“ Performance concern: result in additional dirtying and writeout
updates

* might batched by journal

Unlimited number of subdirectories

“ Each subdirectory has a hard link to its parent

“ Number of subdirectories under a single directory is limited by type
of inode's link count(16 bit)

“ Proposed solution to overcome this limit:

* Not counting the subdirectory limit after counter overflow,

storing link count of 1 instead.

Metadata checksuming

* Proof of concept implementation described in the Iron Filesystem
paper (from University of Wisconsin)

" Storage trends: reliability and seek times not keeping up with
capacity increases

“ Add checksums to extents, superblock, block group descriptors,
iInodes, journal

a

Uninitialized block groups

“ Add flags field to indicate whether or not the inode and bitmap
allocation bitmaps are valid

“ Add field to indicate how much of the inode table has been
initialized

“ Useful to create a large filesystem and fsck a not-very-full large

filesystem

B
Extend EA limit

“ Allow EA data larger than a single filesystem block
“ The last entry in EA block is reserved to point to a small number of

extra EA data blocks, or to an indirect block

ext3 vs ext4 summary

ext3 ext4dev
filesystem limit 16TB 1EB
file limit 2TB 16TB
limit 2**32 2**32
default inode size 128 bytes 256 bytes
block mapping indirect block map extents
time stamp second nanosecond
sub dir limit 2**16 unlimited
EA limit 4K >4K
preallocation in-core reservation for extent file
deframentation No yes
directory indexing disabled enabled
delayed allocation No yes
multiple block
allocation basic advanced

Getting involved

* Mailing list: linux-ext4@vger.kernel.org

“ latest ext4 patch series
ftp://ftp.kernel.org/pub/linux/kernel/people/tytso/ext4-patches

* Wiki: http://ext4.wiki.kernel.org

» Still needs work; anyone want to jump in and help, talk to us
“ Weekly conference call; minutes on the wiki
* Contact us if you'd like dial in

“ IRC channel: irc.oftc.net, /join #linuxfs

a

The Ext4 Development Team

“ Alex Thomas “ Andrew Morton

“ Andreas Dilger “ Laurent Vivier

“ Theodore Tso “ Alexandre Ratchov

“ Stephen Tweedie “ Eric Sandeen

* Mingming Cao “ Takashi Sato

* Suparna Bhattacharya “ Amit Arora

“ Dave Kleikamp * Jean-Noel Cordenner
“ Badari Pulavarathy * Valerie Clement

“ Avantikia Mathur

a

Conclusion

* Ext4 work just beginning

* Extents merged, other patches on deck

Legal Statement

This work represents the view of the authors and does not necessarily represent the view of
IBM.

IBM and the IBM logo are trademarks or registered trademarks of International Business
Machines Corporation in the United States and/or other countries.

Lustre is a trademark of Cluster File Systems, Inc.

Unix is a registered trademark of The Open Group in the United States and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, and service names may be trademarks or service marks of others

References in this publication to IBM products or services do not imply that IBM intends to
make them available in all countries in which IBM operates.

This document is provied "AS IS," with no express or implied warranties. Use the information in
this document at your own risk.

4
4

