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“Two classes of
frequency-
selective digital
filters are
considered:
infinite impulse
response (IIR)
and finite
impulse
response (FIR)
filters.”

SECTION 1

Introduction

SECTION 1

This application note considers the design of frequen-
cy-selective filters, which modify the frequency content
and phase of input signals according to some specifi-
cation. Two classes of frequency-selective digital filters
are considered: infinite impulse response (lIR) and fi-
nite impulse response (FIR) filters. The design process
consists of determining the coefficients of the IIR or FIR
filters, which results in the desired magnitude and
phase response being closely approximated.

Therefore, this application note has a two-fold purpose:

1. to provide some intuitive insight into digital filters,
particularly how the coefficients are calculated in
the digital domain so that a desired frequency
response is obtained, and

2. to show how to implement both classes of digital
filters (IIR and FIR) on the DSP56001.

It is assumed that most readers are analog designers
learning digital signal processing (DSP). The ap-
proach used reflects this assumption in that digital
filters are initially presented from an analog point of
view. Hopefully, this approach will simplify the transi-
tion from the analog s-domain transfer functions to the

MOTOROLA
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equivalent functions in the digital z-domain. In
keeping with this analog perspective, IIR filters will
be discussed first since the equivalent of FIR filters
are infrequently encountered in the analog world.

SECTION 1 is a brief review of lowpass, highpass,
bandpass, and bandstop analog filters. The s-domain
formulas governing the key characteristics, magni-
tude-frequency response, G(Q), and phase-
frequency response, @(Q), are derived from first
principals. Damping factor, d, cutoff frequency, Qc,
for lowpass and highpass filters, center frequency,
Q. for bandpass and bandstop filters, and quality
factor, Q, are defined for the various filter types.

SECTION 2 introduces the bilinear transformation so
that analog s-domain designs can be transformed
into the digital z-domain and the correct coefficients
thereby determined. The form of the formulas for the
z-domain filter coefficients thus determined are gen-
eralized in terms of the key filter characteristics in the
z-domain so that the engineer can design digital fil-
ters directly without the necessity of designing the
analog equivalent and transforming the design back
into the digital domain.

In the analog domain, the performance of the filter
depends on the tolerance of the components. Simi-
larly, in the digital domain, the filter performance is
limited by the precision of the arithmetic used to im-
plement the filters. In particular, the performance of
digital filters is extremely sensitive to overflow, which

1-2
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occurs when the accumulator width is insufficient to
represent all the bits resulting from many consecu-
tive additions. This condition is similar to the
condition in the analog world in which the signal out-
put is larger than the amplifier power supply so that
saturation occurs. A short analysis of the gain at
critical nodes in the filters is given in SECTION 3
and SECTION 4 to provide some insight into the
scaling requirements for different forms of lIR filters.
For this reason, the signal flow graphs developed
are centralized about the accumulator nodes.

The analysis of IIR filters focuses on second-order
sections. Clearly, higher order filters are often re-
quired. Therefore, a brief discussion of how second
order sections can be cascaded to yield higher order
filters is given in SECTION 5. Because the analysis
becomes complex quickly, the discussion naturally
leads to using commercially available filter design
software such as Filter Design and Analysis System
(FDAS) from Momentum Data Systems, Inc. SEC-
TION 6 concludes by showing how the filter
coefficients just discussed can be used in DSP56000
code to implement practical digital filters. Examples
of complete filter designs are given, including the
code, coefficients, frequency response, and maxi-
mum sample frequency.

FIR filters are discussed in SECTION 7. Initially, FIR
filters are contrasted with IIR filters to show that in
many ways they are complementary, each satisfy-
ing weaknesses of the other. An intuitive approach

MOTOROLA 1-3



is taken to calculating the filter coefficients by start-
ing from a desired arbitrary frequency response.
The importance of and constraint imposed by linear
phase is emphasized. Having developed an intuitive
appreciation of what FIR filter coefficients are, the use
of FDAS to accelerate the design process is de-
scribed. SECTION 7 concludes by showing how the
filter coefficients just determined can be used in
DSP56000 code to implement practical digital filters.
An example of a passband digital filter using a Kaiser-
window design approach is presented.

1.1 Analog RCL Filter Types

In the following paragraphs, the analog RCL filter
network will be analyzed for the four basic filter
types: lowpass, highpass, bandpass, and band-
stop. Analyzing analog filter types shows that
designing digital IR filters is, in many cases, much
simpler than designing analog filters.

In this analysis, as in all of the following cases, the
input is assumed to be a steady-state signal con-
taining a linear combination of sinusoidal
components whose rms (or peak) amplitudes are
constant in time. This assumption allows simple an-
alytic techniques to be used in determining the
network response. Even though these results will
then be applied to real-world signals that may not
satisfy the original steady-state assumption, the de-
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viation of the actual response from the predicted
response is small enough to neglect in most cases.
General analysis techniques consist of a linear
combination of steady-state and transient re-
sponse solutions to the differential equations
describing the network.

1.2 Analog Lowpass Filter

The passive RCL circuit forming a lowpass filter
network is shown in Figure 1-1 where the transfer
function, H(s), is derived from a voltage divider
analysis of the RCL network. This approach is valid
since the effect of C and L can be described as a
complex impedance (or reactance, X and X|) un-
der steady state conditions; s is a complex variable
of the complex transfer function, H(s). The filter fre-
quency response is found by evaluating H(s) with
s =jQ, where Q= 21 and f is the frequency of a si-
nusoidal component of the input signal. The output
signal is calculated from the product of the input sig-
nal and H(jQ). To facilitate analysis, the input and
output signal components are described by the
complex value, el = cos Ot + j sin Qt. The actual
physical input and output signal components are
found by taking the real part of this value. The input
is R{e/ = cos Qt; the output is R{H(jQ)e = G(Q)
cos [Qt + @(Q)]. The previous technique is based
upon the solution of the differential equations de-
scribing the network when the input is steady state.
Describing the circuit response by H(s) instead of
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solving the differential equation is a common simpli-
fication used in this type of analysis.
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Vo _ XcliR \ > Vo X.=14QC
Vi XLIR c_|_ R
___(RiiQc)/(R + 1/jQC) X, =joL
“joL + (RjQc)/(R + 1/jQC)
1
- 1/LC Q.= —
—Q2+jQ/RC+1/LC JLC
2
% d= |-
—0?+jdo_0 + 02 R2C
C C

Let s = jQ and define H(s) = V,/V;; then,

H(s)= o
(s1.)" +d(siQ.) +1

which is the s-domain transfer function. The gain, G(Q), of the filter is:
6(0) = JH(s)Hs) |, _ e
- 1
2
«/(1 - 92/95) + (dQ/QC)Z

where Odenotes complex conjugate.
The phase angle, ¢Q, is the angle between the imaginary and
real components of H(s). L

@(@) =tan "[I{H(s)} /R{H(s)}]

= _tal l{ d(Q/Q) } for Q< Q.
1-(Q/Q,)°
d(Q/Q
= —n—tan_{__( o) 4 for Q>Q
1-(Q/Q,)

Figure 1-1 s-Domain Analysis of Second-Order Lowpass Analog Filter
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Normalized Frequency (Q/Q.)

Figure 1-2 Gain and Phase Response of Second-Order Lowpass Analog
Filter at Various Values of Damping Factor, d

The magnitude of H(s) is defined as the gain, G(Q),
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of the system; whereas, the ratio of the imaginary
part to real part of H(s), {H{Q)}YR{H(Q)}, is the tan-
gent of the phase, @(Q), introduced by the filter. If
the input signal is Ay sin (Qit + @), then the output
signal is AkG(Qk) sin [Qkt + @+ ®(Qk)] Figure 1-2
shows the gain, G(Q), and phase, @(Q), plots for the
second-order lowpass network of Figure 1-1 for var-
ious values of damping factor, d; d also controls the
amplitude and position of the peak of the normal-
ized response curve.

The frequency corresponding to the peak amplitude
can be easily found by taking the derivative of G(Q)
(from the equation for G(Q) in Figure 1-1) with re-
spect to Q and setting it equal to zero. Solving the
resultant equation for Q then defines Q) as the fre-
quency where the peak amplitude occurs. The peak
amplitude is then Gy, = G(Qp):

2
Qy = QN(1-d°72) Egn. 1-1

Gy = 1 Eqgn. 1-2

M
d(1—d?/a)

ford<./2 .Ford> .2, Qy=0is the position of the
peak amplitude where Gy, = 1. Whend = /2, Gy, = 1,
which gives the maximally flat response curve used in
the Butterworth filter design (usually applies only to a
set of cascaded sections). Note that Q. for a lowpass
filter is that frequency where the gain is G(Qc) = 1/d
and the phase is ¢(Qc) = -172.
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1.3 Analog Highpass Filter

The passive RCL circuit forming a highpass filter
network is shown in Figure 1-3 where the transfer
function, H(s), is again derived from a voltage divid-
er analysis of the RCL network. The gain and phase
response are plotted in Figure 1-4 for different val-
ues of damping coefficient. As evidenced, the
highpass filter response is the mirror image of the
lowpass filter response.

1.4 Analog Bandstop Filter

The analog RCL network for a bandstop filter net-
work is simply the sum of the lowpass and highpass
transfer functions shown in Figure 1-5 where the
transfer function, H(s), is again derived from a volt-
age divider analysis of the RCL network. The gain
and phase response are plotted in Figure 1-6 for dif-
ferent values of quality factor, Q, (where Q = 1/d).
Neglecting the departure of real RCL components'
values from the ideal case, the attenuation at the
center frequency, fg, is infinite. Also, note that the
phase undergoes a 1 80-degree shift when passing
through the center frequency (zero in the s-plane).

Q for bandpass and bandstop filters is a measure
of the width, AQ, of the stopband with respect to
the center frequency, Qq, i.e., AQ = Q1Q,. AQ is
measured at the points where G(Q) = 1/./2 .
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Vo X IR Vio—| Vo X =1/QC
V.
1

Xc + X IR C
L R
___JoLRi(joL +R) X, = jQL
l/jac +joLR/joL+R
2 1
= -0 QC :_/
—92+jQ/Rc+1/|_c LC
2
=— -0 d= L
—° +jdo Q + 02 R2C

Let s = jQ and define H(s) = V,/V;; then,

(si2,)’

H(s)=

(s/QC)2 +d(s/Q) +1

which is the s-domain transfer function. The gain, G(Q), of the filter is:
6(Q) = JH(s)HTs)|

s= jw 2
(ar9.)

B 2, 2,2 2
. J(l—Q ;) +(de/Q.)
where Odenotes complex conjugate.
The phase angle, @Q, is the angle between the imaginary and
real components of H(s).

() =tan [{ H(s)} /R{H(s)} ]

= n_tan—l{&gc)z} for Q< Q,
1-(Q/Q,)
_ _tan—l{ d(Q/Q,) 2} for Q>Q,
1-(Q/Q,)

Figure 1-3 s-Domain Analysis of Second-Order Highpass Analog Filter
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Figure 1-4 Gain and Phase Response of Second-Order Highpass Analog Filter
at Various Values of Damping Factor, d
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1.5 Analog Bandpass Filter

The passive RCL circuit forming a bandpass filter
network is shown in Figure 1-7 where the transfer
function, H(s), is again derived from a voltage di-
vider analysis of the RCL network. The gain and
phase response are plotted in Figure 1-8 for differ-
ent values of Q. The lowpass gain approaches an
asymptotic function of G = (fC/f)2 for f/fg >> 1. The
highpass asymptotic gain is G = (fC/f)2 for f/fc << 1;
whereas, the bandstop case approaches unity at
zero and infinity with a true zero at the center fre-
quency. The bandpass gain, on the other hand,
approaches G = Q"1f/f. for f/f, << 1 and G = Qf/f
for f/f, >> 1. The primary differences to note in the
bandpass response are:

1. the stopband attenuation is 6 dB/octave or
20 dB/decade (since it goes as 1/f); whereas,
the lowpass and highpass go as 112 (12 dB/
octave, 40 dB/decade)

2. the stopband attenuation asymptote is dependent
on the quality factor; whereas, for the lowpass and
highpass cases, the stopband attenuation
asymptote is independent of damping factor, d

3. the maximum value of gain is unity regardless of
the filter Q.

The specific features characterizing the bandpass,
lowpass, highpass, and bandstop analog networks
are found to be nearly identical in the digital IIR filter
equivalents when the sampling frequency is very
high as compared to the frequencies of interest. For
this reason, it is important to understand the basic
properties of the four filter types before proceeding
to the digital domain.
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L
Yoo _ R Vim—%—o Vo X.=1jQc
\ xcllX, +R R
C
— R XL = JQL
R + (jaL/jc)/(jaL + 1/jQc)
—o?+1Lc Q.= —

) Nic

—a?+jorc +1/LC

—QZ+Q(2) 2
——— Q = 1/d = JR"CIL
—0° +j00/Q + 02

Let s = jQ and define H(s) = V,/Vj; then,

(s/QO)2 +1

H(s)=

2
(s/1Qg)” +s/QpQ +1

which is the s-domain transfer function. The gain, G(Q), of the filter is:
6(Q) = JH(s)Hs) |, 0

1-(Q/9y)]

A/(1 —92/9(2))2 + Q/QOQ)2
where [Odenotes complex conjugate.
The phase angle, @Q, is the angle between the imaginary and
real components of H(s).

(@) =tan " [{ H(s)} /R{H(s)} ]

] (@iyQ)
= —tan —
1-(Q/Qy)

Figure 1-5 s-Domain Analysis of Second-Order Bandstop Analog Filter
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Figure 1-6 Gain and Phase Response of Second-Order Bandstop Analog Filter
at Various Values of Damping Factor, d
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Vo _ R Vi o Vo X = 1/jQC

Vi X *tXc*R L C R
X =jQL

. R L=
jQL +1/jQ +R

JQR/L Q S
—— N c
= JLC
—o?+joRIL+1/LC

iQyQ/Q
S Q=1d = A/RZC/L

2, . 2
—-0° +j0,0/Q + 02

Let s = jQ and define H(s) = V,/V;; then,
s/Q,Q
H(s)= 2

2
(s19g)” +s/9,Q +1

which is the s-domain transfer function. The gain, G(Q), of the filter is:
6(0) = JH()HS) |-

Q/04Q

- 2
J(l -0%102)" + (2/0,Q)°

where [Jdenotes complex conjugate.
The phase angle, @Q, is the angle between the imaginary and

real components of H(s).
®(@) =tan " [I{H(s)} /R{H(s)}]

_1{ Q/Q,Q }
= tan —_—
1-(Q/Q,)

Figure 1-7 s-Domain Analysis of Second-Order Bandpass Analog Filter
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Figure 1-8 Gain and Phase Response of Second-Order Bandpass Analog
Filter at Various Values of Damping Factor, d
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“In the direct-
form
implementation,
the a;and b; are
used directly in
the difference
equation, which
can be easily
programmed on
a high-speed
DSP such as the
DSP56001.”

SECTION 2

Second-Order
Direct-Form IIR
Digital Filter Sections

The traditional approach to deriving the digital filter
coefficients has been to start with the digital z-domain
description, transform to the analog s-domain to un-
derstand how to design filters, then transform back to
the digital domain to implement the filter. This ap-
proach is not used in this report. Instead, formulas are
developed relating the s-domain filter to the z-domain
filter so transformations to and from one domain to the
other are no longer necessary.

The Laplace or s-transform in the analog domain was
developed to facilitate the analysis of continuous time
signals and systems. For example, using Laplace
transforms the concepts of poles and zeros, making
system analysis much faster and more systematic.
The Laplace transform of a continuous time signal is:

X(s) = L{x(t}

Ix(t)e_Stdt Eqn. 2-3
0

where: L =the Laplace transform operator and
implies the operation described in Eqn. 2-3

MOTOROLA
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In the digital domain, the continuous signal, x(t), is
first sampled, then quantized by an analog-to-digital
(A/D) converter before being processed. That is, the
signal is only known at discrete points in time, which
are multiples of the sampling interval, T = 1/,
where fg is the sampling frequency. Because of
the sampled characteristic of a digital signal, its
z-transform is given by a summation (as opposed
to an integral):

X(z) = Z{x(n)}

(o¢]
= z x(n)z_n Eqn. 2-4

n=-o0

where: Z Is the z-transform operator as
described by the operation of Eqn. 2-4

x(n) is the quantized values from the A/D
converter of the continuous time
signal, x(t), at discrete times, t =nT

One property of the z-transform which will be used
later in this report is the time shifting property. The
time shifting property states:

O - O
lEz kX(Z)[I Eqn. 2-5
m m

x(n-k) =2
The proof of this property follows directly from the
definition of the z-transform. An obvious question
arises: “If the s-domain of a signal, x(t), is known
and that same signal is digitized, what is the rela-
tionship between the s-domain transform and the

z-transform?” The relationship or mapping is not

2-2
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unique and depends on the viewpoint used. It is ob-
vious that the trivial mapping, s = z, is inappropriate;
the signal has been sampled. When a bandlimited
signal is sampled (i.e., multiplied by a periodic im-
pulse function), the spectrum of the resulting signal is
repetitive as shown in Figure 2-9 (see Reference 10).

S(f)
A
usable
region
512 0 fs/2 fs 3fg/2
Frequency (f)
Figure 2-9 Spectrum of Bandlimited Signal Repeated at Multiples of the
Sampling Frequency, fs.

Clearly, the spectrum consists of the spectrum of
the bandlimited signal repeated at multiples of the
sampling frequency, wg = 21d. That is, the resulting
spectrum is unique only between 0 and w/2 or mul-
tiples thereof, whereas, before the signal was
sampled, the energy at frequencies greater than
those in the signal was independent of the signal.
Therefore, acceptable mappings would either re-
flect the cyclic nature of the spectrum of the
sampled test or at least be linear over the frequen-
cies of interest.
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One mapping or transformation from the s-domain
to the z-domain discussed later in this report is the
bilinear transformation. To understand the origin of
this transformation, consider the simple first-order
linear analog filter with the system function:

_Y(s)__b
H(s) = m Ry

Eqgn. 2-6

Recall the differentiation property of the s-transform
when x(t) = LYX(s)} (where L is the inverse
Laplace transform operation); then the time deriva-
tive of x(t) is:

d%x(t) = L_l{ sX(s)} Egn. 2-7
where: %x(t) is the time derivative of x(t)

Using the differentiation property of Eqn. 2-7, the
linear system described by Eqn. 2-6 can be ex-
pressed as follows:

Sy +ay(® = bx( Eqn. 2-8

If this differential equation is solved by expressing
y(t) with the trapezoidal integration formula,

t
d
y(®) = [gy(@dt+y(ty) Eqn. 2-9
t
0
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where the approximate solution is given by:

y(®) = 2[5O+ Sy |t-tg) +¥(ty) Ean.2:10

then using %y(t) from Eqn. 2-8 with t = nT and ty =
(n-1)T, Egn. 2-10 can be expressed as follows:

(2+aT)y(n)—-(2—-aT)y(n—1) = bT[x(n) +x(n-1)]

Egn. 2-11

Taking the z-transform of this difference of this dif-
ference equation and using the time shifting
property of the z-transform, Eqn. 2-5 results in the
z-domain system function:

_Y(z) _ b
Hz)=Y&@ - b Eqn. 2-12
TH 152
U+z

Clearly, the mapping between the s-plane and the
z-plane is:

_z0
s=20-2 1 Eqgn. 2-13

Ta+z70

This mapping is called bilinear transformation.
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Although this transformation was developed using a
first-order system, it holds, in general, for an N™-order
system (see Reference 14). By letting s = 0 + jQ and
zZ= reje, it can be shown that the left-half plane in the
s-domain is mapped inside the unit r = 1 circle in the
z-domain under the bilinear transformation. More im-
portantly, whenr =1 and o = 0, the frequencies in the
s-domain and the z-domain are related by:

_ 200
Q= Flan; Eqn. 2-14
or equivalently:
8= 2tan_1%— Eqgn. 2-15

where: 8 s the digital domain normalized
frequency equal to 2mif/f

Q s the analog domain frequency used
in the analysis of the previous section

On the jQ axis or equivalently along the frequency
axis, the scale has been changed nonlinearly. The
gain and phase values depicted on the vertical axis
of Figure 1-2, Figure 1-4, Figure 1-6, and Figure 1-8
remain exactly the same in the digital domain (or z-
plane). The horizontal (frequency) axis is modified
so that an infinite frequency in the analog domain
maps to one-half of the sample frequency, fs/2, in
the digital domain; whereas, for frequencies much
less than fy/2, the mapping is approximately 1:1
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with 8 = Q. In summary, the bilinear transformation
is a one-to-one nonlinear mapping from the s-do-
main into the z-domain in which high frequencies
(Q > 2rfg/4) in the s-domain are compressed into a
small interval in the z-domain. Therefore, the gain
and phase expressions of the previous section can
be directly transformed into the digital domain by
simply substituting Egn. 2-14 into the correspond-
ing expressions. This will be done for each filter
type in the following paragraphs.

First, it is appropriate to introduce the direct-form
implementation of a digital filter by noting that, in
general, if the bilinear transformation of Egn. 2-13 is
substituted into the transfer function, H(s), of the
previous section, the resulting H(z) will have the fol-
lowing generalized form:

bg + blz_1 + bzz_2
H(z) = > Eqgn. 2-16
1+ alz_ + azz_

where the digital domain coefficients, a; and b;, are
exactly related to the s-domain characteristics of
the system such as the center frequency, band-
width, etc. In the direct-form implementation, the g
and b; are used directly in the difference equation,
which can be easily programmed on a high-speed
DSP such as the DSP56001. The time-domain dif-
ference equation is derived from the z-domain
transfer functions by applying the inverse z-trans-
form in general and the inverse time shifting
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property in particular as follows:

-1 -1
Z “{H(z} =Z “{Y(2)/X(z}
-1 -1 -2 -1 -270
=Z §b0+blz +b22 }/[l+alz +a,yz JE
Eqgn. 2-17

so that:

-1 -210 -1 -1
(z)[1+alz tayz JD:Z @((z)[bo+blz +b‘

O

therefore, using the inverse time shifting property of
Eqgn. 2-5:

z‘lﬁqz)z‘kﬁ = {x(n—k)}
and

Z‘l%f(z)z"‘ﬁ = {y(n—k)}

l

Eqgn. 2-17 becomes:
y(n) = box(n) + blx(n -1)+ b2x(n -2)+ aly(n -1) —a2y(n -2)

Eqgn. 2-18
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Eqgn. 2-18 can be directly implemented in software,
where x(n) is the sample input and y(n) is the corre-
sponding filtered digital output. When the filter
output is calculated using Eqn. 2-18, y(n) is calcu-
lated using the direct-form implementation of the
digital filter.

There are other implementations which can be
used for the same system (filter) transfer function,
H(z). The canonic-form implementation and the
transpose-form implementation are discussed in
subsequent sections. First, the directform imple-
mentation will be applied to the transfer function,
H(s), developed in SECTION 1 Introduction .

2.6 Digital Lowpass Filter

Using the analog transfer function, H(s), from Fig-
ure 1-1, Egn. 2-13 and Eqn. 2-14, the digital transfer
function, H(z), becomes that shown in Figure 2-10,
where the coefficients a, (3, and y are expressed in
terms of the digital cutoff frequency, 6., and the
damping factor, d. The value of the transfer function
at 8 = 6. in the digital domain is identical to the value
of the s-domain transfer function at Q= Q_:

ejec

HZ( ) = HS(jQC) Egn. 2-19

As shown in Figure 2-11, the digital gain and
phase response calculated from the equations of
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Figure 2-10 are similar to the analog plots shown
in Figure 1-2, except for the asymmetry introduced
by the zero at fi/2. That is, the frequency axis is
modified so that a gain of zero at f = o in the s-do-
main corresponds to a gain of zero at f = f;/2 in the
z-domain. The fact that the magnitude of the trans-
fer functions, H(s) and H(z), is identical once the
proper frequency transformation is made is very
useful for understanding the digital filter and its re-
lationship to the analog equivalent. This fact is
also useful for purposes of scaling the gain since
the maximum magnitude of G4(Qum) = Gz(Bwm),
where Q) and 0, are related by Eqn. 2-14. In oth-
er words, scaling analysis of the digital transfer
function, H(z), can be done in the s-domain (the al-
gebra is often easier to manage). Scaling of the
gain is an essential part of digital filter implemen-
tation since the region of numeric calculations on
fixed-point DSPs such as the DSP56001 are usu-
ally restricted to a range of -1 to 1.

Using the formulas given in Figure 2-10 with Eqgn. 1-
2 guarantees the behavior of the digital filter. Since
the gain is scaled to unity at f = 0 (DC), the input da-
ta, x(n), in Figure 2-10 must be scaled down by a
factor of 1/Gy, from Egn. 1-2 if the entire dynamic
range of the digital network is to be utilized. The al-
ternative procedure is automatic gain control to
insure that x(n) is smaller than 1/G, before it arrives
at the filter input. For d = ./2 , the input does not re-
quire scaling since the gain of the filter will never
exceed unity.
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The DSP56001 code to implement the second-or-
der lowpass filter section is shown in Figure 2-12.
The address register modifiers are initially set to
MO =4, M4 =1, and M5 =1 to allow use of the cir-
cular buffer or modulo addressing in this particular
implementation (see Reference 8). Typically, this
code would be an interrupt routine driven by the input
data (A/D converter, for example) sample rate clock.
The basic filter code and the interrupt overhead and
data I/O moves for this second-order filter could be
executed at a sample rate of nearly 1 MHz on the
DSP56001.

2.7 Digital Highpass Filter

The highpass filter is nearly identical to the lowpass
filter as shown by the formulas in Figure 2-13. As
with the analog case, the digital highpass filter is
just the mirror image of the lowpass filter (see Fig-
ure 2-14). The frequency transformation from high
to low in the analog case is Q -1/Q; whereas, in the
digital case, it is 6 -11/6.

The DSP56001 code is shown in Figure 2-15; as
seen by comparison to the code shown in Figure 2-
12, the same instruction sequence is used. The only
difference is the coefficient data, which is calculated
by the formulas given in Figure 2-13. The scaling
mode is turned on so that a move from the A or B
accumulator to the X or Y register or to memory re-
sults in an automatic multiply by two. The scaling
mode is used not only in the code for the lowpass
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case but also in the code for the highpass, band-
stop, and bandpass cases.
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Network Diagram

XN = y(n)

Transfer Function a(l+ 22—1 + 2—2)

H(z) =
1/2 —yz_1 + [32_2

Gain —
G(6) = (1 + cosB)(1—cosB,)

. . 2 2.1/2
[(dsinBsinB)” + 4(cosb — cosB,)"]

Phase
_172(cos0 - cosh,,) for 6<6,

[ dsinBsin6, J
o(6)

for 6>6,

1
DQDDDDD

_172(cosB — cosB,)
n+tan | —m——m—F7—
[ dsinBsing, }

Coefficients ~ 1-d/2sin6,
-~ M1 +d/2sin6,

y = (1/2 + B)cosy,

a = (12+B-y)/d

Figure 2-10 Direct-Form Implementation of Second-Order Lowpass IIR Filter and
Analytical Formulas Relating Desired Response to Filter Coefficients
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NOTE: Nyquist frequency, f,y, is equal to one-half the sample frequency f.

Figure 2-11 Gain and Phase Response of Second-Order Lowpass IIR Filter
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Difference Equation

y(n) = 2{a[x(n) +2x(n-1) +x(n-2)] +yy(n-1) - By(n-2)}

Data Structures

X:(RO)

Y:(R4)

2a x(n-1)
a x(n-2)
Y
Y:(R5
B (RS) y(n-1)
a y(n-2)
DSP56001 Code
;Y1=x(n) (Input)
XO0=a
MPY XOYLA  X(ROH+X0  Y(RA+YO ;A=ax(n)
MAC XO,YOA X(RO+X0  Y:(R4),YO A=AH2 ax(n-1)
MAC XOYOA  X(ROHXO  Y(RE+YD A=A+ax(n-2)
MAC XOYOA  X(ROHX0  Y(RE)YO  ;A=A+yy(n-1)
MAC_XOYOA  XROHX0  YLY(RA)  A=A- fy(n-2)
MOVE AX1 AY:(R5) Y(N-2)=2A  (assumes scaling
; mode is set).
X1 is Output.

Total Instruction Cycles

6 Icyc @ 20 MHz = 600ns

Implementation of a Lowpass IIR Filter

Figure 2-12 DSP56001 Code and Data Structures for Second-Order Direct-Form
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Network Diagram

x(nN)—>

Transfer Function 0(1—22_1 + 2—2)

H(z) =
1/2 —yz_l + [32_2

Gain —
G(0) = (1—cos9)(1 + cosB,)

. . 2 2.1/2
[(dsinBsinB)” + 4(cosb — cosB,)"]

Phase
s tar [2(c0_se - f:osec)} for 6<6,
dsinBsin6,
o) )
_1{ (cosB— COSGC)J

&N | —qgsinsine, for 6>6

1
I:H:H:IDDI%I:I

Coefficients Eil_Dl —d/2sin6,

P = Brivazsine,
y = (1/2 + B)cosH,

o = (112+B+y)/4

Figure 2-13 Direct-Form Implementation of Second Order Highpass IIR Filter and
Analytical Formulas Relating Desired Response to Filter Coefficients
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NOTE: Nyquist frequency, fyy, is equal to one-half the sample frequency f.

Figure 2-14 Gain and Phase Response of Second-Order Highpass IIR Filter
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Difference Equation

y(n) = 2{a[x(n)-2x(n—-1) +x(n-2)] +yy(n-1) -By(n-2)}

Data Structures

X:(RO)[ 5 Y:(R4) (1)
a x(n-2)
Y
E: Y& [yn1)
a y(n-2)

DSP56001 Code
;Y1=x(n) (Input)
XO0=a
MPY XO0,Y1,A  X:(RO)+XO0 Y:(R4)+YO  ;A=ax(n)
MAC XO0,YOA  X:(RO)+XO Y:(R4),YO A=A-2 oax(n-1)
MAC XO,YO,A  X:(R0)+XO0 Y:(R5)+,YO ;A=A+ax(n-2)
MAC XO0,YOA  X:(RO)+XO Y:(R5),YO A=A+ yy(n-1)
MAC XO0,YOA X:(RO)+XO0 Y1,Y:(R4) A=A- By(n-2)
MOVE AX1 AY:(R5) Y(N)=2A  (assumes scaling
, mode is set).
;X1 s Output.

Total Instruction Cycles

6 Icyc @ 20 MHz = 600ns

Figure 2-15 DSP56001 Code and Data Structures for Second-Order Direct-Form
Implementation of a Highpass IIR Filter
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2.8 Digital Bandstop Filter

The formulas and network diagram for the digital
bandstop filter are presented in Figure 2-16. The
DSP56001 code from Figure 2-17 is identical to that
for the lowpass and highpass cases except for the
coefficient data calculated from the equations of
Figure 2-16. Scaling of this filter is not a problem for
the singlesection case since the gain from the
equation in Figure 2-16 never exceeds unity (as is
true in the analog case as seen by the gain equation
from Figure 1-5). Figure 2-18 is the calculated gain
and phase of the digital filter, which should compare
to the response curves of the equivalent analog fil-
ter plotted in Figure 1-6.

2.9 Digital Bandpass Filter

Because there is one less coefficient in the bandpass
network (see Figure 2-19), one instruction can be
saved in the DSP56001 code implementation shown
in Figure 2-20. Otherwise, the instructions are identi-
cal to those in the other three filter routines. Like the
second-order bandstop network, the maximum re-
sponse at the center frequency, 6y, is unity for any
value of Q so that scaling need not be considered in
the implementation of a single-section bandpass fil-
ter. This is true when the formulas for a, 3, and y
(from Figure 2-19) are used in the direct-form imple-
mentation in Figure 2-20. Figure 2-21 is the
calculated gain and phase of the digital filter, which
should compare to the response curves of the equiv-
alent analog filter plotted in Figure 1-8.
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Network Diagram
x(n) ©

Transfer Function a(1—2c0§902_l + 2—2)

H(z) =
1/2 —yz_1 + Bz_2
Gain |cosd — cosd|
G(O) = 2 2.1/2
[(dsinBsinB;)” + 4(cosB — cosB;) ]
Phase 2(cos )
_ . _ar2(cosd - cosb,
®(6) = tan [ dsin@sing, }
Coefficients J = 2tan(68,/2Q)

sing,

[l —tan(8,/2Q)
~ 201 + tan(8,/2Q)

y = (1/2 + B)cosH,

a = (1/2+B)/2

Figure 2-16 Direct-Form Implementation of Second-Order Bandstop IIR Filter and
Analytical Formulas Relating Desired Response to Filter Coefficients
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Difference Equation

y(n) = 2{a[x(n)-2cosByx(n—1) +x(n-2)] +yy(n—-1) -By(n-2)}

Data Structures

X:(RO) Y:(R4)

—20c0$y x(n-1)
a x(n-2)
y .
B YEI ymy
a y(n-2)

DSP56001 Code
;Y1=x(n) (Input)
X0=«a

MPY XO,YLA  X:(RO)+XO Y:(R4)+Y0 A= ax(n)
MAC XO0,YOA  X:(RO)+XO Y:(R4),YO A=A-2 acosq gx(n-1)
MAC XO0,YOA  X:(RO)+XO Y:(R5)+YO A=A+ ax(n-2)
MAC XO0,YOA  X:(R0O)+XO Y:(R5),YO A=A+ yy(n-1)
MAC XO0,YOA  X:(R0O)+XO Y1,Y:(R4) A=A- By(n-2)
MOVE AX1 AY:(R5) Y(N)=2A  (assumes scaling
mode is set).
;X1 is Output.

Total Instruction Cycles

6 Icyc @ 20 MHz = 600ns

Figure 2-17 DSP56001 Code and Data Structures for Second-Order Direct-Form
Implementation of a Bandstop IIR Filter
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Figure 2-18 Gain and Phase Response of Second-Order Bandstop IR Filter
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2.10 Summary of Digital
Coefficients

Figure 2-22 gives a summary of the coefficient val-
ues for the four basic filter types. Note that the
coefficient, B has the same form for all four filter
types and that it can only assume values between
0 and 1/2 for practical filters. 8 is bounded by 1/2
because Q (or d) and 8, are not independent. For
Q>>1, 3-1/2; whereas, for 8y = f5/4 and Q = 1/2,
B-0. These properties are independent of the form
of implementation; they are only dependent on the
form of the transfer function. Alternate implementa-
tions (difference equations) will be described in the
following sections.

Note that the Q described in Figure 2-22 meets the
traditional requirements (i.e., Q is the ratio of the
bandwidth at the -3 dB points divided by the center
frequency). The formula for 3 can be modified in
the case of the bandpass or bandstop filter by re-
placing the damping coefficient, d, with the formula
for Q. When the coefficients are described in this
manner, a constant Q filter results. When the
bandwidth is any function of center frequency, this
relationship between d and Q makes it impossible
to implement a bandpass or bandstop filter by re-
placing Q with the desired function of bandwidth
and center frequency.

Figure 2-23 shows the relationship between the
pole of the second-order section and the center fre-
quency. Note that the pole is on the real axis for
d>2, where d is also constrained by d < 2/sin 8j,.
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Network Diagram
x(N)o

Transfer Function

-2
- _a@d-z")
HZ) = ——————
1/2-yz “+PBz
Gain dsind, sin®
G(®) = 2 2.1/2
[(dsinBsinB;)” + 4(cosb — cosB)°]
Phase 2(cosd )
_ _172(cosB — cosh,
®(6) = —tan { dsinesing, J
Coefficients

_ 2tan (64/2Q)
- sind,

B Dlljl —tan(8,/2Q)

B=om +tan(6,/2Q)

y = (172 + B)cosh,

a = (1/2-B)2

Figure 2-19 Direct-Form Implementation of Second-Order Bandpass IIR Filter and
Analytical Formulas Relating Desired Response to Filter Coefficients
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y(n) = 2{a[x(n)—x(n-2)] +yy(n—-1)-By(n-2)}

Difference Equation

Data Structures

X:(RO)

Y:(R4)

Y:(R5)

x(n-1)

x(n-2)

y(n-1)

y(n-2)

MOVE

MPY X0,YLA
MAC X0,YO,A
MAC X0,YO,A
MAC X0,YO,A

AX1

DSP56001 Code

;Y1=x(n) (Input)
X0=«a

X:(RO+X0  Y:(R4),YO  :A=oax(n)
X(RO)+X0  Y:(R5)+Y0 ;A=A- ax(n-2)
X:(RO+X0  Y:(R5),YO  A=A+yy(n-1)
X(RO+X0  YLY:(RA+ A=A- By(n-2)
AY:(R5) Yy(n)=2A

;  mode is set).
;X1 is Output.

(assumes scaling

Total Instruction Cycles

5 lcyc @ 20 MHz = 500ns

Figure 2-20 DSP56001 Code and Data Structures for Second-Order
Direct-Form Implementation of a Bandpass IIR Filter
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Figure 2-21 Gain and Phase Response of Second-Order Bandpass IIR Filter
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Z-Domain Transfer Function

_a(l+ pz_l + 02_2)
H(z) = =) =
1/2-yz “+ Bz

Difference Equation (Direct Form)

y(n) = 2{a[x(n) +ux(n-1) +ox(n-2)] +yy(n-1) -By(n-2)}

Coefficients
171 —1/2dsing 2tan(8,/2Q)
= S = = (1/2+ 0
2[1 ¥ 1/2dsine(j 4= e, v = (12 +B)cosdy
where 0 < B < 1/2 and 8y 2mlfy  fy

T A, 2n(f,—f)f, T f,—f;

where fj is the center frequency of the bandpass or bandstop filter,
f, and f, are the half-power points (where gain is equal to 1/,/2), and

fs is the sample frequency. Note the fj is replaced with f;, in the lowpass
and highpass cases.

Numerator Coefficients
Type a ] o Unity Gain at
Lowpass (272 + B-y)/4 2 1 |f=0
Highpass (272 + B+y)/4 -2 1 |f=142
Bandpass | (1/2 - B)/2 0 -1 [ =1y
Bandstop | (1/2 +B)/2 -2cod, 1 |f=0andf="fy2

NOTE: 90 = 2T[f0/fs

Figure 2-22 Summary of Digital Coefficients for the Four Basic Filter Types
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Pole Equation of H(z) zp = rcosep +jrsinep

S 2
= yxjN2B-y
B coseoirjsineo«/l—(1/2d)2

For d<2

1+ %dsine0

where:  p = %(Z—dsineo)/(2+dsin60) and y = (1/2+pB)cosh,

Distance from Origin to Pole is |Z,| = /2B

Ford>2  Z,= y-+/y’-2p

_ cosHy—sinb, (1/2d)2 -1

1+ %dsine0

where: ep = 0 To satisfy requirement 0<p<1/2 results in %dsin60<1
A
Im[z]

Center or Cutoff
Frequency

/ Relz
r=.2p

Figure 2-23 Pole Location and Analysis of Second-Order Section
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SECTION 3

Single-Section
Canonic Form
(Direct Form II)

“The canonic The single-section canonic form network is dis-
(direct form II) cussed in the following paragraphs.
network has
trade-offs that
must be
carefully .
ndersioodand 3-11 The Canonic-Form
analyzed for the Difference Equation
particular
application.” The direct-form difference equation, rewritten from
—  EQqn. 2-18, is:
2 2
y(n)= % bx(n-1)- % ajy(n-1) Eqgn. 3-20
i-0 =1

Eqgn. 3-20 can be represented by the diagram of Fig-
ure 3-24 (a). This diagram is the same as those
shown in Figure 2-10, Figure 2-13, Figure 2-16, and
Figure 2-19, except that the summations have been
separated to highlight the correspondence with Eqn.
3-20. From this diagram, it is clear that the direct-form
implementation requires four delay elements or,
equivalently, four internal memory locations.
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< i
'3}1 w(n-2) -

(c) Collapsing Delay Terms (part ‘a’ above) Resulting in Canonic-Form Diagram

Figure 3-24 The Second-Order Canonic (Direct Form Il) IR Filter Network
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The diagram of Figure 3-24(b) represents the same
transfer function implemented by Egn. 3-20, but
now the delay variable is w(n). Comparison of this
network with that of the direct-form network of Fig-
ure 3-24 (a) shows that interchanging the order of
the left and right halves does not change the overall
system response (see Reference 11).

The delay elements can then be collapsed to pro-
duce the final canonic-form network shown in Figure
3-24 (c). As a result, the memory requirements for
the system are reduced to the minimum (two loca-
tions); therefore, this realization of the IIR filter is
often referred to as the canonic form. The system
difference equations for the canonic realization are:

2
Egn. 3-21
y(n) = 3 bi(w(n-i) an. e
i=0
where: )
w(n) = x(n)- z aj(w(n—j)) Eqn. 3-2b
iS1

To prove that Eqn. 3-21a and Eqgn. 3-2b are equiv-
alent to Eqn. 3-20, the following procedure can be
used. First, combine Eqgn. 3-21a and Eqn. 3-2b:

2 2
y(n) = Z b;| x(n—i)- Z ajw(n—j—i)
i=0 j=1
2 2 2
= z b,x(n~i) - z aj Z bw(n—i-j)
i=0 j=1 i=0
2 2
= z b;x(n—i)— Z ajy(n-j) Eqgn. 3-3
i=0 j=1
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The last step uses the definition for y(n) from Eqn.
3-21a. The result is exactly equivalent to Eqn. 3-
20, the direct-form difference equation. To utilize
the scaling mode on the DSP56001, it is advanta-
geous to write Eqn. 3-21a and Eqgn. 3-2b as
follows:

, _ . U _ a 3 0
(n) = Z%W(nhzw(n 1)+2w(n 2)%

Egn. 3-4a
and

w(n) = 2{ax(n) +yw(n-1)-pw(n-2)} Eqgn. 3-4b

where: the coefficients have been substituted for
the a; and bj

From these equations, it can be seen that both y(n)
and w(n) depend on a sum of products and there-
fore are the output of an accumulator. The
accumulators on the DSP56001 have eight exten-
sion bits; thus, the sum can exceed unity by 255
without overflowing. However, when the contents of
a 56-bit accumulator are transferred to a 24-bit reg-
ister or memory location (i.e., delay element), an
overflow error may occur. The digital filter designer
must insure that only values less than unity are
stored. Of course, even if memory had the precision
of the accumulators, overflow can still occur if the
accumulator itself experiences overflow. However,
intermediate sums are allowed to exceed the ca-
pacity of the accumulator if the final result can be
represented in the accumulator (a result of the cir-
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cular nature of twos-complement arithmetic).

To insure that overflow does not occur, it is necessary
to calculate the gain at the internal nodes (accumula-
tor output) of a filter network. Although canonic
realization is susceptible to overflow, it is advanta-
geous because of the minimum storage requirements
and implementation in fewer instruction cycles.

3.12 Analysis of Internal
Node Gain

Calculating the gain at any internal node is no differ-
ent than calculating the total network gain. In Figure
3-25, the transfer function of node w(n) is H,(2).
H,,(z) represents the transfer function from the input
node, x(n), to the internal node, w(n). The gain,
Gw(0), at w(n) is found in the standard manner by
evaluating the magnitude of H,,(z) as shown in Fig-
ure 3-26. Note that the flow diagram of Figure 3-25
uses the automatic scaling mode (multiply by a fac-
tor of two when transferring data from the
accumulator to memory) so that the coefficients are
by definition less than one. The peak gain, g,, of
G,(6) is found by taking the derivative of G,(8) with
respect to 0 and setting the result equal to zero. A
simple expression for g, is derived as follows:

4, qf
E§+BD Eqn. 3-5
for 7B coseo <1 gn. 3-

[¢f

%—Bgsinep

90~
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where: 6, is the angle (see Figure 2-23) to the
pole of the filter
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X(x)
Y(2)
W(z)
I ¢ y(n)
(Left Shift)
>
u
2
] : ™S
—B\I w(n-2) I/g
2
1 -1 -2 _ a
H(z) = 0((l +uf1 +0f2 ) H,(2) = ———yz‘1+Bz‘2
5-vz +Pz 2

Figure 3-25 Internal Node Transfer Function, H,(z), of Canonic
(Direct Form Il) Network
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Since this result does not depend on the numerator
of the filter transfer function, H(z), the result is valid
for all four basic filter types. However, as shown by
the example given for a bandpass network in Figure
3-26, g, may exceed unity by a large amount, espe-
cially for filters having poles at frequencies much
less than f4/2 where sin 8p << 1. To compensate,
the input must be scaled down by an amount equal
to 1/g, or guaranteed not to exceed 1/g, before ar-
riving at the filter. This scaling aspect of the
canonic-form network is a disadvantage, but this
network has the advantage of being implemented in
one less instruction than the other filter realizations
for the lowpass, highpass, and bandstop filters; of
course, less memory is required since only two inter-
mediate variables are stored.

In general, the behavior of systems at internal nodes
can be unexpected. For instance, it is interesting to
note that the frequency at which the gain at the inter-
nal node of the canonic IIR filter section peaks is not
the same as the frequency at which the gain of the
filter peaks as given by the poles of the filter. From
Figure 2-13, this behavior is expressed by:

> cosBo
1@ = oD Eqn 3-6
5+ B p

The canonic (direct form Il) network has trade-offs
that must be carefully understood and analyzed for
the particular application.

3-8
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Gain at w(n) is: ) W(z) o
Z)= =
w X(z) %_yz—l + [32_2
_ ie -8
Gy ()= [H, (e)H, (e ™)

a

A/%—[%Fsinze + % + BEZ

where: y = (% + B) cos B has been used.

(0036—00390)2

cod _
Peak Gain is: dGGW(e)‘e _o " 0
Frequency of peak gainis: cos6, = Ecoseo forEcosBO <1
=1 otherwise
i1, o f
B*R
where: &= 2
a
99=G,,(6,) = — for§cosfy<1
il 0 1-Y_
2 2B
a

S otherwise

% + l%(l — cosBy)

EXAMPLE: Maximum Internal Node Gain for Bandpass Filter

_ 1
9% = Zsinep forgcos@ < 1

where y* = 2B2 cos?6), has been used and a= (1/2-B)/2 for a bandpass filter.
If sinB, > 1/2, then gg <1; otherwise, an overflow (i.e., go>1) may occur at the
internal node, w(n), unless the input is scaled down by 1/g.

Figure 3-26 Internal Node Gain Analysis of Second-Order Canonic Form

MOTOROLA 3-9



Difference Equation
- oH ! 4 3
y(n) = Z%W(n) + 2w(n—l) + 2w(n—Z)E

w(n) = 2{ax(n) +yw(n-1)-Bw(n-2)}

Data Structures

X:(RO) ({1 YR
w(n-2) -B
u/2
al2

a

DSP56001 Code
;Y1=x(n) (Input)
;X0=a
MPY X0,YLA  X:(RO)+X0  Y:(R4)+Y0 ;A= oax(n)
MAC XO,YO,A  X:(RO),XL  Y:(R4)+YO  ;A=A+yw(n-1)
MACR  X1,YO,A  XO0,X:(R0O)- Y:(R4)+,Y0 A=A- Bw(n-2)
MAC X0,YO,A  AX:(RO) Y:(R4)+Y0  ;A=1/2w(n)+ p2w(n-1)
MACR  XLY0A AXO Y:(R4)+,YO A=A+ o/2w(n-2). X0=2A
;(assumes scaling mode
;is set). X0 is Output.

Total Instruction Cycles

5 Icyc @ 20 MHz = 500ns

Figure 3-27 Internal Node Gain Analysis of Second-Order Canonic Form
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3.13 Implementation on the
DSP56001

Figure 3-27 shows the DSP56001 code and data
structures for implementation of the single-sec-
tion canonic-form network. Note that the modifier
register M4 is set equal to 4 to allow circular op-
eration for addressing coefficient data. MO is set
to FFFF to turn off circular addressing for w(n-1)
and w(n-2). =

3-11 MOTOROLA



3-12 MOTOROLA



SECTION 4

Single-Section
Transpose Form

A third realization of IIR filters is the transpose form
(direct form I) shown in Figure 4-1. This network imple-
mentation can be derived directly from the direct-form
difference equation (see Figure 4-1) or by taking the
transpose of the canonic network (see References 10
and 11). The transpose realization is characterized by
three accumulator operations. One reason for the pop-
ularity of this realization is that, like the canonic
realization, it only requires two memory locations;
however, unlike the canonic realization, it is much less

“The modifier
register M4 is
initially set to a
value of 4 so that
a circular buffer
can be
conveniently
used to address
the coefficient

data.” prone to overflow at internal nodes. The disadvantage
— is that this realization requires more instructions to im-
plement.

4.14 Gain Evaluation of
Internal Nodes

Using the same technigques used to calculate H,,(z) for
the canonic realization, H,(z) and H,(z) are found as
shown in Figure 4-2 and Figure 4-3. The resulting ex-
pressions, unlike the canonic-form results, depend on
the numerator of the transfer function; thus, the internal
gains, G(6) and G/(8), have different forms for the dif-
ferent filter types. In the case of the bandpass filter,
these results simplify significantly so that a closed-form
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expression for the maximum gain at the internal
nodes can be derived by calculating the maxima of
the gain functions. For the bandpass and bandstop
networks, the maximum of G,(8) and G,/(86) is g,, =
B+ 1/2. Since, B < 1/2, then g, < 1 so that no over-
flow occurs at these nodes in the bandpass or
bandstop case.

Figure 4-4 contains example plots of G,(8) and G,/(8)
for the second-order transpose-form lowpass filter
with various values of cutoff frequency, 6., and
damping factor, d. In most cases, G(6) and G,/(8)
never exceed the maximum value of G(6), so that, if
the total gain does not exceed unity, the internal
nodes will not exceed unity (i.e., no overflow).

4.15 Implementation on the
DSP56001

The DSP56001 code and data structures for a single-
section second-order transpose-form network are
shown in Figure 4-5. Referring to the network diagram
of Figure 4-1, the diamond blocks enclosing 1/2 are
represented in the code by an accumulator shift right
(ASR) instruction. The 2 that is enclosed by a dia-
mond block can be implemented by the automatic
scaling mode (equivalent to a left shift of the accumu-
lator) feature of the DSP56001. The modifier register
M4 is initially set to a value of 4 so that a circular buffer
can be conveniently used to address the coefficient
data. Note that this network requires more instructions
than either of the previous two network forms.
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Network Diagram

Direct-Form Difference Equation

y(n) = 2{a[x(n) +ux(n—1) + ox(n =2)] +yy(n—1) —By(n —2)}

2{ax(n) + aux(n —1) +yy(n —1) +[aox(n —2) —By(n —2)]}

2|jxx( ) +lapx(n—1) +yy(n—1) +3 u(n_z)]D

2px(n) + 3 v(n —1)D
0

Transpose-Form Difference E&Fatlon
y(n)= 2[px(n) + -V(n —1)D

where  v(n)= 2[prpx(n)+yy(n)+ u(n—1)|:|
and u(n)= 2{a0x(n) By(n)}

Figure 4-1 Network Diagram for Transpose-Form (Direct Form |)
Implementation of a Single-Section Second-Order Filter
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GAIN AT INTERNAL NODE, u(n) |

Transfer function of u(n) is  U(z) = 2[aoX(z) —=BY(z)]
= H,(2)x(2)

where H,(2)= 2[ac —pH(2)]

- 00'(1/2—YZ_1 + BZ_Z) —ap(1+ uz_l + 02_2)
12— yz_l + [31_2

_ Za(A—Bz_l)
=2 -1 -2
1/2—yz ~ +pz
where H,(2) is the transfer function from input node, x(n), to internal mode, u(n), and
A=0/2-B and B = oy + pp.

Gain of u(n) is G,(8) = |H,(2)| 0
zZ=¢€

_ 20(«/A2+BZ—2ABCO$

J(llz - B)zsinze + (12 + ;3)2((:059 — €0S8,)

2

BANDPASS EXAMPLE

Bandpass Coefficients are g=-1 H=0 a = (12-p)r2
sothat A = —(1/2+p)
B = —y

—(1/2 + ) cosy,

(12 —-)(112 +B) sin?o + (cose— coseo)2
and G (6) =

J(l/z —p)%sin®0 + (112 + B)°(co — cos8,)”
Peak Gain is 9, = G,(8,)

o . d _
which is found by evaluating QGU(G)\9 o = 0

after evaluating derivative, Gm = 60

(12— B)(1/2 + B)sind,
(172-Psindy)

sothat 9., = =1/2+p3<1

Figure 4-2 Gain Evaluation at First Internal Node, u(n), of Transpose Network
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GAIN AT INTERNAL NODE, v(n) |
Transfer function of v(n) is  v(z) = [Y(z)—ZGX(z)]/Z_l
= H,(2)x(2)

H(z) —2a

-1
z

where  v(2)= 2[3v(2)z" + ax(2)] H(2)=

and = af(1+ w4 02_2) —2(12 + vz 1+ Bz_z)]
2_1(1/2 —yz_1 + Bz_z)
_ _2a(c+ Az_l)

-1 -2
1/2—yz ~ + Pz
where Hv(z) is the transfer function from input node, x(n), to internal mode, v(n), and
A=c/2-band C = w2 +g.

Gain of v(n) is G,(8) = |H,(2)| 0
zZ=¢

2a /\/AZ + C2 +2ACCO9

J(l/Z —p)%sin6 + (12 + B)°(COS — COSAy)

BANDPASS EXAMPLE

Bandpass Coefficients are c=-1 H=0 a = (12—-B)2
sothat A = —(1/2+8)
C=y

= (12 +B)Ccoss,

(12 —B)(1/2 + B), /sin%6 + (COS — COS8,)
and G (6) =

J(yz —p)%sin6 + (112 + B) (O — cosBy)”
Peak Gain is 9y = G,(8,)

. . d -
which is found by evaluating d—eev(e) lg = 6, = 0

after evaluating derivative, 8, = 8

(12 —p) (12 + B)sing,
sothat Om = T —B)sing,

= 12+B<1

(since < 1/2

Figure 4-3 Gain Evaluation at Second Internal Node, v(n), of Transpose Network
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Gain

ool L1
0 50 100 150 200 250 300 350 400 450 500

Frequency

(@) fo = 450 Hz and d=,/2

£
T
O]
| | | | | |
0 50 100 150 200 250 300 350 400 450 500
Frequency
(b) f. = 250 Hz and d=./2

25

20 -

15—
< G
8 1.0 Gy

0.5 -

u
0.0
| | | | | | | | |

0 50 100 150 200 250 300 350 400 450 500
Frequency

(c) fo =250 Hz and d= 1/2

Figure 4-4 Total Gain and Gain at Internal Nodes of Lowpass Transpose
Filter Network Figure 4-1 for f; = 1000Hz
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Difference Equation

y(n) = 2000x(n) + Bv(n 1)
g g

v(n) = 20px(n) +yy(n) + 2u(n - 1)1
g ]

u(n) = 2{aox(n)-By(n-1)

X:(RO)

X:(R1)

Y:(R4)

Data Structures

ap

ao

MACR YO,Y1A
ASR B

MAC YO0,Y1B
MACR X0,Y0,B
MPY YO0,Y1,B
MACR X0,Y0,B
ASR A

X:(R1),B
AXO

B,X:(RO)
X:(RO),A
B.X:(R1)

Y:(R4)+,YO
Y:(R4)+,YO
Y:(R4)+,YO
Y:(R4)+,YO

Y:(R4)+,Y0

DSP56001 Code

;Y1=x(n) (Input)
;YO= a . A=v(n-1)/2

A=A+ ax(n)

Y(N)=X0=2A  (scale mode on)
;B=u(n-1)/2+  apx(n)
;B=B+yy(n)

y(n)=2 B. B=aox(n)

;B=B- By(n)

A=V(N)/2. u(n)=2B

;YO= 0. y(n)=X0 (output)

Total Instruction Cycles

7 lcyc @ 20 MHz = 700ns

Figure 4-5 DSP56001 Code and Data Structures for Single-Section
Second-Order Transpose Form
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“ ..the
cascaded direct-
form network
becomes
canonic as the
filter order N
increases.”

SECTION 5

Cascaded Direct Form

By placing any of the direct-form second-order filter
networks from Figure 2-10, Figure 2-13, Figure 2-16,
and Figure 2-19 in series (i.e., connect the y(n) of one
to the x(n) of the next), a cascaded filter is created.
The resulting order N of the network is two times the
number of second-order sections. An odd-order net-
work can be made simply by adding one first-order
section in the chain. In general, to achieve a particular
response, the filter parameters associated with each
second-order section are different, since generating a
predefined total response requires that each section
has a different response. This fact becomes more ob-
vious when discussing the special case of Butterworth
lowpass filters.

5.16 Butterworth Lowpass Filter

The Butterworth filter response is maximally flat in the
passband at the expense of phase linearity and steep-
ness of attenuation slope in the transition band. For
lowpass or highpass cascaded second-order sections,
all sections have the same center frequency (not the
case for bandpass filters). For this reason, it is easy to
design since all that remains to be determined are the

MOTOROLA
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damping factors, dk, of each individual kth section.
The damping coefficients, dk, are calculated from a
simple formula for any order N of response.

The s-domain transfer function for the N'-order
lowpass Butterworth filter is:

1 s 1

] 2 ] 2
[{s/QC) + dl(s/QC) + 1D[(s/QC) + d2(1)(5/Qc) +1

g
g
0
O

N/2
= 5 1 Eqgn. 5-7
kzl(s/QC) +dk(s/QC)+1

where: dk is the k' damping coefficient,
s =jQ
Q. is the common cutoff frequency
(see Reference 14).

Only filter orders of even N will be considered in this
discussion to minimize the complexity of mathemat-
ical results. The analysis can be extended to
include odd values of N by inserting an additional
term of [(s/Q,) + 1]'1 in Egn. 5-7. Eqn. 5-7 can be
generalized if Q, Of each second-order section is
an arbitrary value (corresponding to a different cut-
off frequency, Qy, of each section). However, since
this discussion is limited to Butterworth polynomi-
als, Eqn. 5-7 will serve as the basis of all following
derivations. A filter of order N has N/2 second-order

5-2

MOTOROLA



sections. The second-order section of a Butterworth
filter can be derived from the simple RCL network of
Figure 1-1. However, the Butterworth damping factors
are predetermined values, which can be shown to
yield a maximally flat passband response (see Refer-
ence 14). The Butterworth damping coefficients are
given by the following equation:
(2k-1)mt

dk = ZsinT Eqgn. 5-8

Eqgn. 5-8 is the characteristic equation that deter-
mines a Butterworth filter response. Note that for a
single-section (k = 1) second-order (N = 2) lowpass
filter, d,, = 2 sin (174) =2 as expected for a maxi-
mally flat response. For a fourth-order filter with two
second-order sections, d; = 2 sin (1U8), where k=1
and N =4, and d, = 2 sin (3178),

where k=2 and N = 4.

Eqgn. 5-7 represents an all-pole response (the only
zeros are at plus and minus infinity in the analog s-
domain). The poles of a second-order section are
the roots of the quadratic denominator as given by:

12
_ . 2
Py = ~dy/2-5 ~dj/4g (@)
and
) _ 2 2
Py, = /2 +iF —dp /45 (b)
Eqn. 5-9
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Using , Egn. 5-7 becomes:

N/2
1

kljl[(s/QC)—pk] [(s/Q) -p,

H(s) = Eqgn. 5-10

where:  py = py; and
Pt = Pk (complex conjugate of py)

Eqgn. 5-10 is useful in that the response of the sys-
tem can be analyzed entirely by studying the poles
of the polynomial. However, for purposes of trans-
forming to the z-domain, Eqgn. 5-7 can be used as
previously shown in Figure 2-10.

To examine the gain and phase response (physically
measurable quantities) of the lowpass Butterworth
filter, the transfer function, H(s), of Eqn. 5-7 will be
converted into a polar representation. The magni-
tude of H(s) is the gain, G(Q); the angle between the
real and imaginary components of H(s), ¢(Q), is the
arctangent of the phase shift introduced by the filter:

6(Q) = HESHIS)g _ jq

N/2

1 Eqgn. 5-11
2
k=1 J[(Q/QC)Z - 1}

+(d /0,
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N2 d.0/9,
o(Q = Z tan — Eqn. 5-12
k=1 (Q/QC) -1

Egn. 5-11, and Eqgn. 5-12 describe the response
characteristics of an N-order lowpass Butterworth
filter in the continuous frequency analog do-
main.Since the quantity of interest is usually 20 log
G(Q), Egn. 5-11 can be transformed into a sum
(over the second-order sections) of 20 log (Gy),
where Gy is the gain of the kth section. Similarly, the
total phase is just the sum of the phase contribution
by each section from Egn. 5-12.

The bilinear transformation is used to convert the
continuous frequency domain transfer function into
the digital domain representation, where 6, the nor-
malized digital domain frequency equal to 2ri/fs,
can be thought of as the ratio of frequency to sam-
pling frequency scaled by 21 Substituting s from
Eqgn. 2-13 and Q. from Eqn. 2-14 into the kth section
of Eqn. 5-7 yields the digital domain form of the But-
terworth lowpass filter (for the ki second-order
section):

a (1+ 22714 2_2)

Hk(z) = =] . > Eqgn. 5-13
E—ykz Bkz
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o = [tanz(BC/Z)}/Ak(c) @)
2

B = [1-dktan(eclz)+tan (GC/Z)J/Ak(c) (b)

Y = 2[1—tan2(9C/2)J/Ak(Gc) (©)

2
A(6) = 2[1+dktan(eclz)+tan (GCIZ)J (d)
Eqgn. 5-14

(a)-(d) provides a complete description of the digital
lowpass N™-order Butterworth filter. Given 8, and
dy, these formulas allow precise calculation of the
digital coefficients, ay, By, and yj, used to implement
each k" second-order section of the filter.

(a)-(d) can be further simplified into the following set

of formulas:
_ 1-(d/2)sin(8,)
Pk = ST d2)sine,)] (@)
Yy = (/2 + Bk)cos(ec) (b)
ay = (12 +B, -V, )/4 (€)

Eqgn. 5-15
where: d, Is given by Egn. 5-8
6. Iis the digital domain cutoff frequency
(actual operating cutoff frequency of
the digital filter)
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Figure 5-28 Composite Response of Cascaded Second-Order Sections for
Lowpass Butterworth Filter (k‘h Section Damping Factor According to

Eqn. 5-8)

Figure 5-28 shows an example of a sixth-order low-
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pass Butterworth filter (three second-order sections)
in both the analog domain and digital domain. Note
that the gain of the first section (k = 1) is greater than
unity near the cutoff frequency but that the overall
composite response never exceeds unity. This fact
allows for easy implementation of the Butterworth fil-
ter in cascaded direct form (i.e., scaling of sections
is not needed as long as the sections are imple-
mented in the order of decreasing k). Overflow at the
output of any section is then guaranteed not to occur
(the gain of the filter never exceeds unity). Note that
the digital response (see Figure 5-28) is identical to
the analog response but warped from the right along
the frequency axis. Imagine the zero at plus infinity
in the analog response mapping into the zero at f;/2
in the digital case. Also note that, because of this
mapping, the digital response falls off faster than the
-12 dB/octave of the analog filter when the cutoff is
near fg/2.

The previous analysis is nearly identical to the case
of the highpass filter except the coefficients (see
Figure 3-24) have slightly different values. Since
the bandstop case is just the sum of a lowpass and
highpass case, it can be analyzed by these tech-
nigues. The bandpass case, however, is more
difficult and requires considerably more work (see
Reference 14) because the center frequency of
each section is now different and the formula for
calculating these frequencies is not as simple as
the formulas for the previous filter types. In addi-
tion, to complicate matters further, scaling between
sections becomes more of a problem since the off-
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set of the center of each section reduces the final
center response, which must be compensated at
some point in the filter network. For cases such as
higher order Butterworth bandpass filter designs,
commercially available filter design packages such
as FDAS are useful. The use of FDAS is discussed
in SECTION 6 Filter Design And Analysis Sys-
tem (FDAS) and SECTION 7 Fir Filters.

5.17 Cascaded Direct-
Form Network

Figure 5-29 shows the cascaded direct-form net-
work and data structures for the DSP56001 code
implementation of Figure 5-30. By cascading net-
work diagrams presented in SECTION 2 Second-
Order Direct-Form IIR Digital Filter Sections , the
set of delays at the output of one section can be
combined with the set of delays at the input of the
next section, thus reducing the total number of de-
lays by almost a factor of two. For this reason, the
cascaded direct-form network becomes canonic as
the filter order N increases. The DSP56001 code
(see Figure 5-30) shows an example of reading
data from a user-supplied memory-mapped analog-
to-digital converter (ADC) and writing it to a memo-
ry-mapped digital-to-analog converter (DAC). The
number of sections (nsec) in these examples is
three; thus, the filter order is six. The total instruction
time for this filter structure is 600 nsec + 800 ns, in-
cluding the data I/O moves (but excluding the
interrupt overhead).
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Network Diagram

Difference Equations

y1(n) = 2{o;[x;(n) + wx;(n + 1) + g;x;(n =2)] +y;x,(n=1) =By;(n-2)}

Xi+1(n—K) = y(n—k)

Data Structures
X:(RO)

coeff

By

aj

010,

apHy

Y1

B2

a2

020,

asH,

Y2

B3

a3

0303

O3H3

Y3

Y:(R4)

xbuf

X1(n-2)

X1(n-1)

Xo(n-2)

Xp(n-1)

x3(n-2)

X3(n-1)

y(n-2)

y(n-1)

x(n-2).|
F—
X(0-1),
';/1(_n'2)—I

(1),
;)’2(_n'2)—|
Yot 1)

=3
y3(n-2)
ye1)

Figure 5-29 Network Diagram for Cascaded Direct-Form Filter and Data
Structures Used in Code Implementation (Three-Section Example)
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DSP56001 CODE

MOVE #coeff, RO ;Pointer to coefficients

MOVE #1,M4 ;Modulo of length 2 for xbuf

MOVE X:(RO)+, X1 B

MOVE X:(RO)+, X0 N

MOVE #2,N4

MOVE (RA)+ ;Point to next xbuf entry
;Input:Y1=x(n)

DO X: nsec, Sectn ;Loop on number of sections

MPY XOYLA X(RO}+X0  Y:(R4)+YO A= a; X (n)

MAC  XO,YOA X:(RO)+X0  Y:(R4)+N4,YO A=A+ a; G; Xj (N-2)

MAC XOYOA X:(RO+X0 Y:(R4)+YO A=A+ a; 1 X (n-1)

MAC  XO,YOA Y:(R4)-N4,YO A=A v (D)

MAC -XLYOA X:(ROy-X1  Y1Y:(R4)+N4 A=A By; (n-2). Save x(n)

MOVE AY1 X:(RO)+X0 iy i (n)=2A, assumes scale mode on

Sectn X1= gag - X0= ging

;Outputy(n)=Y1

MOVE X:Buflen, M4 ;Filter Order +1

NOP

MOVE Y1,Y:(R4)+N4 ;Save y(n)

Total Instruction Cycles

(6*nsec+10)Icyc @ 20 MHz = (0.6*nsec+1.0)ns

NOTE: nsec is number of sections.

Figure 5-30 DSP56001 Code for Cascaded Direct-Form Filter
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“The filter
example used is a
sixth-order
Butterworth
lowpass filter
with a cutoff
frequency of
approximately
225 Hz and a
sample
frequency of
1000 Hz.”

SECTION 6

Filter Design and
Analysis System

The following paragraphs discuss the design of a
cascaded filter in both the direct-form and canonic im-
plementations, using a software package, QEDesign
(formerly FDASY), available from Momentum Data
Systems, Inc. The filter example used is a sixth-order
Butterworth lowpass filter with a cutoff frequency of
approximately 225 Hz and a sample frequency of
1000 Hz. Figure 6-6 is the log magnitude (gain) plot
from the system output. Figure 6-7 is the phase as a
function of frequency in wrapped format (-1t wraps to
+1). In addition, Figure 6-8 is a zero/pole plot, and Fig-
ure 6-9 is the group delay, which is the negative of the
derivative of the phase with respect to frequency.

FDAS will also generate an impulse response, step re-
sponse, and a linear magnitude plot. The results of the
design are written to a file, FDAS.OUT, which contains
much useful information. The coefficient data is written
to COEFF.FLT. The DSP56001 code generator
(MGEN) reads the COEFF.FLT file and generates a
DSP56001 assembly source file, COEFF.ASM, which

1. All references to FDAS in this application note refer to the
software package QEDesign.

MOTOROLA
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can be assembled by the DSP56001 assembler or
linker software. Examples of these files are shown
in Figure 6-10 to Figure 6-10.

6.18 Canonic Implementa-
tion

Figure 6-10 is the output file associated with the
FDAS design session, containing information on the
analog s-domain equivalent filter as well as the final
digital coefficients (listed again in Figure 6-6), which
have been properly scaled to prevent overflow at the
internal nodes and outputs of each cascaded sec-
tion. This procedure is done automatically by the
program in a matter of seconds. Executable code is
generated by MGEN (also from Momentum Data
Systems, Inc.), as shown in Figure 6-7. The code in-
ternal to each cascaded section is five instructions
long; thus, 500 ns (assuming a DSP56001 clock of
20 MHz) is added to the execution time for each ad-
ditional second-order section.

6-2

MOTOROLA



Log Magnitude (dB)

a0 |

0.000 1.000
E+00 E+02

2.000 3.000
E+02 E+02

Frequency (Hz)

4.000 5.000
E+02 E+02

Passband Ripple in -dB
Stopband Ripple in -dB
Passband Cutoff Frequency
Stopband Cutoff Frequency
Sampling Frequency

All Frequencies in Hertz

Quantization 24 Bits Fixed Point Fractional

-.5000
-20.0000
200.000
300.000
1000.00

Lowpass Filter

IIR Design-Bilinear Transformation
Butterworth

Filter Order: 6

Filter Design & Analysis System
Momentum Data Systems, Inc.

Figure 6-6 Log Magnitude Plot of Example Lowpass Butterworth Filter
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2 L |
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ko]
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(%]
©
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o
2 — |
L I I ) S I N
0.000 1.000 2.000 3.000 4.000 5.000
E+00 E+02 E+02 E+02 E+02 E+02
Frequency (Hz)
Passband Ripple in -dB -.5000 Lowpass Filter
Stopband Ripple in -dB -20.0000 IIR Design-Bilinear Transformation
Passband Cutoff Frequency 200.000 Butterworth
Stopband Cutoff Frequency 300.000 Filter Order: 6
Sampling Frequency 1000.00
All Frequencies in Hertz ) )
Quantization 24 Bits Fixed Point Fractional Filter Design & Analysis System
Momentum Data Systems, Inc.

Figure 6-7 Phase Versus Frequency Plot for Example Filter
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1.00

Passband Ripple in -dB -.5000
Stopband Ripple in -dB -20.0000
Passband Cutoff Frequency 200.000
Stopband Cutoff Frequency 300.000
Sampling Frequency 1000.00

All Frequencies in Hertz
Quantization 24 Bits Fixed Point Fractional

Lowpass Filter

IIR Design-Bilinear Transformation
Butterworth

Filter Order: 6

Filter Design & Analysis System
Momentum Data Systems, Inc.

Figure 6-8 Zero/Pole Plot of Sixth-Order Lowpass Example Filter
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Seconds

Sampling Frequency
All Frequencies in Hertz
Quantization 24 Bits Fixed Point Fractional

0.0
0.000 1.000 2.000 3.000 4.000 5.000
E+00 E+02 E+02 E+02 E+02 E+02
Frequency (Hz)
Passband Ripple in -dB -.5000 Lowpass Filter
Stopband Ripple in -dB -20.0000 IIR Design-Bilinear Transformation
Passband Cutoff Frequency 200.000 Butterworth
Stopband Cutoff Frequency 300.000 Filter Order: 6
1000.00

Filter Design & Analysis System
Momentum Data Systems, Inc.

Figure 6-9 Group Delay Versus Frequency for FDAS IIR Example
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Filter Type Low Pass

Analog Filter Type Butterworth

Passband Ripple In-dB -5000

Stopband Ripple In -dB -20.0000

Passband Cutoff Frequency 200.000 Hertz
Stopband Cutoff Frequency 300.000 Hertz
Sampling Frequency 1000.00 Hertz

Filter Order: 6
Filter Design Method: Bilinear Transformation

Coefficients of Hd(z) are Quantized to 24 bits

Quantization Type: Fixed Point Fractional
Coefficients Scaled For Cascade Form I

NORMALIZED ANALOG TRANSFER FUNCTION T(s)

Numerator Coefficients Denominator Coefficients

INITIAL GAIN 1.00000000

UNNORMALIZED ANALOG TRANSFER FUNCTION T(s)

Numerator Coefficients Denominator Coefficients

INITIAL GAIN 1.00000000

DIGITAL TRANSFER FUNCTION Hd(2)

Numerator Coefficients Denominator Coefficients

INITIAL GAIN .876116210

S**2 TERM STERM CONSTTERM  S*2TERM S TERM CONST TERM
.000000E+00 .000000E+00 .100000E+01  .100000E+01.193185E+01 .100000E+01
.000000E+00 .000000E+00 .100000E+01  .100000E+01.141421E+01 .100000E+01
.000000E+00 .000000E+00 .100000E+01  .100000E+01.517638E+01 .100000E+01

S*2 TERM S TERM CONSTTERM  S*2TERM STERM CONST TERM
.000000E+00 .000000E+00 .299809E+07  .100000E+01.334500E+04 .299809E+07
.000000E+00 .000000E+00 .299809E+07  .100000E+01.244871E+04 .299809E+07
.000000E+00 .000000E+00 .299809E+07  .100000E+01.896290E+03 .299809E+07

772 ZTERM CONSTTERM 72 ZTERM CONST TERM
.2520353794 5040707588 .252035379 1.00000 -.1463916302 .0225079060
.2364231348 4728463888 236423134 100000 -.1684520245 1765935421
.3606387377 7212774754 360638737 1.00000 -.2279487848 .5921629667

Figure 6-10 FDAS.OUT File of Example Filter for Cascaded
Canonic Implementation

(sheet 1 of 2)
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ZEROES OF TRANSFER FUNCTION Hd(z)

Real Part Imaginary Part Real Part  Imaginary Part Radius
-.100000000E+01 .00000000E+00  -.100000000E+01 .00000000E+00 .100000000E+01
-.999290168E+00 .00000000E+00  -.100071034E+01 .00000000E+00 .999290168E+00
-.100000000E+01 .00000000E+00  -.100000000E+01 .00000000E+00 .100000000E+01

POLES OF TRANSFER FUNCTION Hd(z)

Real Part Imaginary Part Real Part Imaginary Part Radius
.731958151E-01  .130959072E+00 .731958151E-01 -130959072E+00  .150026351E+00
.842260122E-01  .411703195E+00 .842260122E-01 -411703195E+00  .420230344E+00
113974392E+00  .761034036E+00  .113974392E+00 -.761034036E+00 .769521258E+00

NUMERATOR COEFFICIENTS - HIGHEST ORDER FIRST (in 2)

.214893785E-01 .128936282E+00 .322340720E+00 A429787634E+00  .322340720E+00
.128936282E+00 .214893785E-01

DENOMINATOR COEFHICIENTS - HIGHEST ORDER FIRST (in 2)

.100000000E+01  -.542792439E+00 .887692610E+00 .267088214E+00 .143235132E+0
-184597152E-01  .235370025E-02

IMPULSE RESPONSE MIN =-.179722E+00, MAX = .452734E+00

Figure 6-5 FDAS.OUT File of Example Filter for Cascaded
Canonic Implementation (sheet 2 of 2)
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FILTER COEFFICIENT FILE

IIR DESIGN

FILTER TYPE LOW PASS
ANALOG FILTER TYPE BUTTERWORTH
PASSBAND RIPPLE IN -dB -.5000
STOPBAND RIPPLE IN -dB -20.0000

PASSBAND CUTOFF FREQUENCY  .200000E+03 HERTZ
STOPAND CUTOFF FREOUENCY .300000E+03 HERTZ

SAMPLING FREQUENCY .100000E+04 HERTZ
FILTER DESIGN METHOD: BILINEAR TRANSFORMATION
FILTER ORDER 6 0006h

NUMBER OF SECTIONS 3 0003h

NO. OF QUANTIZED BITS 24 0018h
QUANTIZATION TYPE - FRACTIONAL FIXED POINT
COEFFICIENTS SCALED FOR CASCADE FORM 11

0 00000000 [* shift count for overall gain */
7349395 00702493 /* overall gain */
0 00000000 /* shift count for section 1 value */
2114226 002042B2 /* sectionl coefficient BO */
4228452 00408564 /* sectionl coefficient B1 */
2114226 002042B2 /* sectionl coefficient B2 */
1228022 0012BCF6 /* sectionl coefficient Al *
-188810 FFFD1E76 /* sectionl coefficient A2 */
0 00000000 /* shift count for section 2 values */
1983261 001E431D /* section2 coefficient BO */
3966523 003C863B /* section2 coefficient B1 */
1983261 001E431D /* section2 coefficient B2 */
1413078 00158FD6 /* section2 coefficient Al */
-1481374 FFE96562 /* section2 coefficient A2 */
0 00000000 /* shift count for section 3 values */
3025257 002E2969 /* section3 coefficient BO */
6050514 005C52D2 /* section3 coefficient B1 */
3025257 002E2969 /* section3 coefficient B2 */
1912173 001D2D6D /* section3 coefficient Al */
-4967423 FFB43401 /* section3 coefficient A2 */

.2520353794097900D+00 3FD0215900000000 .25203538E+00  /*section1BO  */
.504D707588195801D+00 3FE0215900000000 .50407076E+00  /*section1Bl  */
.2520353794097900D+00 3FDD215900000000 .25203538E+00  f*secton1B2 */
.1463916301727295D+00 3FC2BCF600000000 .14639171E+00  /*sectonl1Al ¥
-.2250790596008301D-01  BF970C5000000000 -.22507921E-01  /*secton1A2 */
.2364231348037720D+00 3FCE431D00000000 .23642325E+00  /*section2BO  */
4728463888168335D+00 3FDE431D80000000 .47284651E+00  f*secton2Bl ¥/
.2364231348037720D+00 3FCE431D00000000 .23642325E+00  /secton2B2 ¥/
.1684520244598389D+00 03FC58FD60000000 .168452D4E+D0  /*section2 Al %/
.1765935470989990D+00 BFCE9A9E000000D0 -.17659356E+00  /*secton2 A2 ¥/
.3606387376785278D+00 3FD714B480000000 .36063876E+00 /*secton3BO  */
.7212774753570557D+00 3FE714B480000000 .72127753E+00 /*section3Bl */
.3606387376785278D+00 3FD714B480000000 .36063876E+00 /*secton3B2 */
.2279487848281860D+00 3FCD2D6DDO0000000 .22794882E*00  /*section3A1l  */
-5921629667282104D+00 BFE2F2FFC0000000 -59216306E+00 /*section3A2 */

Figure 6-6 COEFF.OUT File of Example Filter Design-Scaled for
Cascaded Canonic Implementation
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6.2 Transpose
Implementation
(Direct Form 1)

Figure 6-8 is the output file from FDAS for a trans-
pose-form implementation. As before, it contains
information on the analog s-domain equivalent filter
as well as the final digital coefficients (listed again
in Figure 6-9), which have been properly scaled to
prevent overflow at the internal nodes and outputs
of each cascaded section. Because of the stability
of the internal node gain of the transpose form and
because of the response of each second-order But-
terworth section, scaling was not done by the
program because it was not needed. Executable
code shown in Figure 6-10 is again generated by
MGEN. The code internal to each cascaded section
is seven instructions long; thus, 700 ns (assuming a
DSP56001 clock of 20 MHz) is added to the execu-
tion time for each additional second-order section.
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FILTER TYPE LOW PASS

ANALOG FILTER TYPE BUTTERWORTH
PASSBAND RIPPLE IN -dB -.5000

STOPBAND RIPPLE IN -dB -20.0000

PASSBAND CUTOFF FREQUENCY 200.000 HERTZ
STOPBAUD CUTOFF FREQUENCY 300.000 HERTZ
SAMPLING FREQUENCY 1000.00 HERTZ

FILTER ORDER: 6

FILTER DESIGN METHOD: BILINEAR TRANSFORMATION
COEFFICIENTS OF Hd(Z) ARE QUANTIZED TO 24 BITS
QUANTIZATION TYPE: FIXED POINT FRACTIONAL

COEFFICIENTS SCALED FOR CASCADE FORM | (TRANSPOSE FORM)

NORMALIZED ANALOG TRANSFER FUNCTION T(s)

NUMERATOR COEFFICIENTS DENOMINATOR COEFFICIENTS
S*2TERM S TERM CONST TERM S*2TERM STERM CONST TERM
.000000E+00 .000000E+00 .100000E+01 .100000E+01.193185E+01  .100000E+01
.000000E+00 .000000E+00 .100000E+01 .100000E+01.141421E+01  .100000E+01
.000000E+00 .000000E+00 .100000E+01 .100000E+01.517638E+00  .1000000E+01
INITIAL GAIN 1.00000000

UNNORMALIZED ANALOG TRANSFER FUNCTION T(s)

NUMERATOR COEFFICIENTS DENOMINATOR COEFFICIENTS
S*2TERM STERM CONST TERM S*2 TERM S TERM CONST TERM
.000000E+00.000000E+00 .299809E+07 .100000E+01 .334500E+04  .299809E+07
.000000E+00.000000E+00 .299809E+07 .100000E+01.244871E+04  .299809E+07
.000000E+00.000000E+00 .299809E+07 .100000E+01.896290E+03  .299809E+07

INITIAL GAIN 1.00000000

DIGITAL TRANSFER FUNCTION Hd(2)

NUMERATOR COEFFICIENTS DENOMINATOR COEFFICIENTS
Z*2TERM ZTERM CONST TERM Z*2TERM ZTERM CONST TERM
.2190289497.4380580187 .2190289497 1.000000 -.1463916302 .0225079060
.2520353794.5040707588 .2520353794 1.000000 -.1684520245 .1765935421
.3410534859.6821070910 .3410534859 1.000000 -.2279487848 .5921629667
INITIAL GAIN 1.00000000

ZEROES OF TRANSFER FUNCTION Hd(2)

REAL PART IMAGINARY PART REALPART  IMAGINARY PART  RADIUS
-.999262530E+00 .000000000E+00 -.100073501E+01 .000000000E+00 .999262530E+00
-.100000000E+01 .000000000E+00 -.100000000E+01 .000000000E+00 .100000000E+01
-.999408962E+00 .000000000E+00 -.100059139E+01 .000000000E+00 .999408962E+00

Figure 6-8 FDAS.OUT File of Example Filter for Cascaded Transpose—
Form Implementation (sheet 1 of 2)
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POLES OF TRANSFER FUNCTION Hd(2)

Real Part Imaginary Part Real Part Imaginary Part Radius
- 731958151E-01 -130959072E+00 -.731958151E-01 -130959072E+00 -.150026351E+00
-.842260122E-01 -411703195E+00 -.842260122E-01 -411703195E+00 -.420230344E+00
-.113974392E+00 -.761034036E+00 -.113974392E-00 -.761034036E+00 -.769521258E+00

NUMERATOR COEFFICIENTS -HIGHEST ORDER FIRST (inz)

.188271907E-01  .112963161E+00.282407928E+00 .376543916E+00 .282407928E+O0
.112963161E+00  .188271907E-01

DENOMINATOR COEFFICIENTS - HIGHEST ORDER FIRST (in2)

.10000000E+01  -.542792439E+00.887692610E+00 -.267088214E+00 .143235132E+00
.184597152E-01  .235370025E-02

IMPULSE RESPONSE MIN =-.179722E+00, MAX = .452734E+00

Figure 6-8 FDAS.OUT File of Example Filter for Cascaded Transpose—
Form Implementation (sheet 2 of 2)
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FILTER COEFFICIENT FILE

IIR DESIGN

FILTER TYPE LOW PASS
ANALOG FILTER TYPE BUTTERWORTH
PASSBAND RIPPLE IN -dB -.5000
STOPBAND RIPPLE IN -dB -20.0000

PASSBAND CUTOFF FREQUENCY .200000E+03 HERTZ
STOPBAND CUTOFF FREQUENCY .300000E+03 HERTZ
SAMPLING FREQUENCY .100000E+04 HERTZ
FILTER DESIGN METHOD: BILINEAR TRANSFORMATION
FILTER ORDER 6 0006h

NUMBER OF SECTIONS 3 0003h

NO. OF QUANTIZED BITS 24 0018h

QUANTIZATION TYPE - FRACTIONAL FIXED POINT
COEFFICIENTS SCALED FOR CASCADE FORM |

1 00000001 [* shift count for overall gain *
4194304 00400000 * overall gain *
0 00000000 [* shift count for section 1 values *
1837348 001C0924 /* section 1 coefficient BO *
3674697 00381249 [* section 1 coefficient B1 *
1837348 001C0924 [* section 1 coefficient B2 *
1228022 00128CF6 [* section 1 coefficient A1 *
-188810 FFFDIE76 [* section 1 coefficient A2 *
0 00000000 [* shift count for section 2 values *
2114226 00204292 [* section 2 coefficient BO *
4228452 00408564 [* section 2 coefficient B1 *
2114226 00204282 [* section 2 coefficient B2 *
1413078 00158FD6 [* section 2 coefficient A1 *
-1481374 FFE96562 [* section 2 coefficient A2 *
0 00000000 [* shift count for section 3 values *
2860964 002BA7A4 [* section 3 coefficient BO *
5721929 00574F49 [* section 3 coefficient B1 *
2860964 002BA7A4 [* section 3 coefficient B2 *
1912173 001D2D6D [* section 3 coefficient Al *
-4967423 FFB43401 [* section 3 coefficient A2 *

.2190289497375488D+00 3FCC092400000000 .21902905E+00 /*section 1BO  */
4380580186843872D+00 3FDC092480000000 .43805810E+00 /*section 1B1  */
.2190289497375488D+00 3FCC092400000000 .21902905E+00 /*section 1B2  */
.146391630172 n95D+00 3FC2BCF600000000 .14639171E+00 /*secton 1Al ¥/
-.2250790596008301D-01 BF970C5000000000 -.22507921E-01 /*section 1 A2 */
.2520353794097900D+00 3FD0215900000000 .25203538E+00 /*section 2B0  */
.5040707588195801D+00 3FE0215900000000 .50407076E+00 /*section 2Bl %/
.2520353794097900D+00 3FD0215900000000 .25ZD3538E+00 /*section 2B2 %/
.1684520244598389D+00 3FC58FD6E00000000 .16845204E+00 /*section 2Al  */
-.1765935420989990D+00 BFC69A9E00000000 -.17659356E+00 /*section 2A2 %/
.34105348587036130+00 3FDSD3D200000000 .34105356E+00 /*section 3BO  */
.6821070909500122D+00 3FESD3DZ40000000 .68210712E+00 /*section 3Bl  */
.3410534858703613D+00 3FDSD3D200000000 .34105356E+00 /*section 3B2  */
.2279487848281860D+00 3FCD2D6D00000000 .22794882E+00 /*section 3Al ¥/
-5921629667282104D+00 BFE2F2FFC0000000 -.59216306E+00 /*section 3A2  */

Figure 6-9 COEFF.FLT File for Example Filer Design—Scaled for Cascaded
Transpose Form
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SECTION 7

FIR FILTERS

“The filter can |f phase distortion is of secondary importance to
be efficiently magnitude response, the desired filter can generally
implemented on be implemented with less memory, less computation-
the DSP56001 by al complexity, and at the lowest cost using IIR
using modulo structures. On the other hand, in applications requir-
addressing to ing linear phase in the passband and a specific
implement the magnitude response, the specified filter is generally
shifting and best implemented using FIR structures. Examples of

parallel data applications requiring linear phase are as follows:
moves to load
the multiplier-
accumulator.”

4. Communication systems such as modems or
Integrated Services Digital Networks (ISDN) in
which the data pulse shape and relative timing in

—— the channel must be preserved

5. Ideal differentiators which provide a 90-degree
phase shift at all frequencies in addition to a
constant group delay

6. Hilbert transformers used to demodulate complex
signals such as those used in high-speed modems

7. Hi-fidelity audio systems in which phase distortion
of recorded music must be minimized to reproduce
the original sound with as much fidelity as possible

8. System synthesis in which the system impulse
response is known as a priori. FIR filters are also
important because they are all-zero filters (i.e., no
feedback) and are therefore guaranteed to be
stable.
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7.19 Linear-Phase FIR
Filter Structure

The basic structure of a FIR filter is simply a tapped
delay line in which the output from each tap is
summed to generate the filter output. This is shown
in Figure 7-31. This structure can be represented
mathematically as:

N-1
y(n) = Z h(i)x(n-i) Eqgn. 7-16
i=0

where:  x(n) is the most recent (t = nT) input
signal sample

X(n-i) is signal samples delayed by i
sample periods (iT)

h(i)  is the tap weights (or filter
coefficients)

y(n) is the filter output at time t = nT

From this structure, it is easy to see why the filter is
termed finite—the impulse response of the filter will
be identically zero after N sample periods because
an impulse input (i.e., x(n) = 1, x(n-i) = 0 for i # 0) will
have traversed the entire delay line at time t = NT.
That is, the impulse response of FIR filters will only
last for a finite period of time. This response is in
contrast to IIR filters which will “ring” in response to
an impulse for an infinite period of time. The values
of the coefficients represent the impulse response
of the FIR filter as can be seen by evaluating Eqgn.
7-16 over N sample periods for a single-unit input
pulse at time t = 0.

7-2
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Digital Delay Line—\

-1

x(n) Z-l Z-l

(Filter Input)

y(n) (Filter Output)

Figure 7-31 FIR Structure

There are no feedback terms in the structure (i.e.,
Eqgn. 7-16 has no denominator) but rather only N ze-
ros. By taking the z-transform of Eqn. 7-16, the
transfer function of the filter becomes:

N-1
H(z) = % - .zo h(i)z Eqn. 7-17
i=

Eqgn. 7-17 is a polynomial in z of order N. The roots
of this polynomial are the N zeros of the filter.

The same procedures used to calculate the magni-
tude and phase response of IIR filters can be
applied to FIR filters. Accordingly, the gain, G(8),
can be obtained by substituting z = e into Eqn. 7-
17 (where 6 = 217/fg is the normalized digital frequen-
cy), then taking the absolute value so that:

MOTOROLA
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N-1

i h(i)e

i=0

G(8) = i

Eqgn. 7-18

N-1
= 3 [n(i)cosid - jh(i)sinie]
i=0

The phase response, ¢(0), is found by taking the in-
verse tangent of the ratio of the imaginary to real
components of G(0) so that:

N-1
- Y hsinie
1 =0
N_1
Y h(i)cos®
i=0

o(6)=tan’ Egn. 7-19

where:  h(i) is implicitly assumed to be real

Intuitively, it can be reasoned that, for any pulse to
retain its general shape and relative timing (i.e.,
pulse width and time delay to its peak value) after
passing through a filter, the delay of each frequency
component making up the pulse must be the same
so that each component recombines in phase to re-
construct the original shape. In terms of phase, this
implies that the phase delay must be linearly related
to frequency or:

o(0) = —16 Eqgn. 7-20
This relationship is illustrated in Figure 7-2 in which
a pulse having two components, sin wt and sin 2wt
passes through a linear-phase filter having a delay
of two cycles per Hz and a constant magnitude re-
sponse equal to unity. That is, the fundamental is

7-4
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delayed by two cycles (4m) and the first harmonic is
delayed by four cycles (8m). The group delay of a
system, g, is defined by taking the derivative of ¢(6):

_ do
=_—1 Egn. 7-21
'9="ap q
Filter
X1 (t) = sin wt

A@, = 48T = -4T

Xo(t) = sin 2wt
» L
Ap, = 8tr16m = -8T
» t
Composite input Stretched pulse within filter Composite output
pulse shape pulse shape
Legend:

—— Represents the filtered wave
Represents the unfiltered wave (i.e., no delay)

Figure 7-32 Signal Data through a FIR Filter

Since 8 is the normalized frequency, 14 in Egn. 7-21
is a dimensionless quantity and can be related to
the group delay in seconds by dividing by the sam-
ple frequency, fs. For a linear-phase system, 14 is
independent of 8 and is equal to 1. This fact can be
seen by substituting Egn. 7-20 into Eqn. 7-21.

In this example, 14 is two cycles per Hz. Note that
the pulse shape within the filter has been retained
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but is twice the width of the original pulse; that is the
change in the pulse width is equal to the group de-
lay. The negative sign indicates the phase is
retarded or delayed (i.e., a causal system).

The impact of the requirement of linear phase on
the design of a FIR filter can be seen by substituting
Eqgn. 7-19 into Eqn. 7-20 so that:

i h(i)sini@

_ =0 Egn. 7-22
tanerg ol o — q

h(i)cosi®

which can be written as:

N-1
z h(i)(cos'esineTg—siniecoserg) =0
i= 0

or

N-1
h(i)sin[8(t, -] = 0 Eqn. 7-23
0

The solution to is the constraint on 1q for a FIR filter
to be linear phase. The solution to can be found by
expanding the left-hand side (LHS) as follows:

7-6
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LHS = hosinGTg + hlsine(tg -1)+ hZSinG(Tg -2)+...

+hN_3sin9(Tg—N +3)+ hN_ZsinB(Tg—N +2)+ hN_lsine(Tg—N +1)

so that if:

—
P4
|
A
—

Eqgn. 7-24

then for every positive argument there will be a cor-
responding negative argument. For example, the
argument for the h; term becomes:

[N 1_1D edN 35

which is the negative of the argument for the hy .
term, i.e.,

N-1 O- _oMN-=30
GD > _N+2[|__6D 5[
so that if:
h(i) = h(N-1-i) for O0<isN-1 Eqgn. 7-25

then Eqn. 7-9 and Eqn. 7-25 represent the solution
0 . By substituting Eqn. 7-9 into Eqn. 7-20, the
phase of a linear-phase FIR filter is given by:

o6 = 2 Eqn. 7-26

MOTOROLA 7-7



Therefore, a nonrecursive filter (FIR), unlike a recur-
sive filter (IIR), can have a constant time delay for all
frequencies over the entire range (from 0 to f5/2). It is
only necessary that the coefficients (and therefore
impulse response) be symmetrical about the mid-
point between samples (N-2)/2 and N/2 for even N or
about sample (N-1)/2 for odd N (see Egn. 7-25).
When this symmetry exists, 14 for the filter will be

iN-1g
05 DT seconds.

7.20 Linear-PhaseFIRFilter
Design Using the
Frequency Sampling
Method

Implementing a FIR filter in DSP hardware such as
the DSP56001 is a relatively simple task. Determin-
ing a set of coefficients that describe a given
impulse response of a filter is also a straightforward
procedure. However, deriving the optimal coeffi-
cients necessary to obtain a particular response in
the frequency domain is not always as easy. The
following paragraphs introduce a simple method to
determine a set of coefficients based on a desired
arbitrary frequency response (often referred to as
the frequency sampling method). This method has
the distinct advantage of being done in real time.
However, the most efficient determination of coeffi-
cients is best done by utilizing a software filter

7-8 MOTOROLA



design system such as FDAS to perform numerical
curve-fitting and optimization, a procedure that ne-
cessitates using a computer. For example, the
inverse Fourier transform integral is used to deter-
mine the FIR coefficients from a response
specification in the frequency domain, which gener-
ally requires a numerical integration procedure. The
inverse discrete Fourier transform (IDFT), which
can be implemented using the inverse fast Fourier
transform (IFFT) algorithm, is discussed in the fol-
lowing paragraphs. One reason for choosing this
approach is to demonstrate a method that can be
used to determine coefficients in real time since the
fast Fourier transform (FFT) can be implemented in
the same DSP56001 hardware as the FIR filter.

The question is “How must the filter be specified in the
frequency domain so that Eqn. 7-25 and Eqn. 7-26 are
realized?”. That is, starting with the definition of the fil-
ter in the frequency domain, a method for calculating
the filter coefficients is required. Beginning with Eqgn.
7-17, the z-transform of the FIR filter, and evaluating
this transfer function on the unit circle at N equally

spaced normalized frequencies (i.e., z = &N
produces:
2T[k/N 21ki/N
H(k) = H(e! Z h(i)e
Eqgn. 7-27

where: 0<ks<N-1

h(i) can be solved in terms of the frequency response
at the discrete frequencies, H(k), by multiplying both
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ej2T[km/N

sides of by and summing over k as follows:

N-1 . N-1IN-1 ] . )
z H(k)eJZTIkm/N: h(i)e—]2r[k|/Ne12nkm/N

k=0 k=0i=0

N—1 N—1
- z h(i) 2 e—]2nk|/N812nkm/N

i=o0 k=0

N—1

= z h(i)NBim
i=o

= Nh(m)

Eqgn. 7-28
where: &, is the Kronecker delta, which is equal
to one when i = m but is zero otherwise

can be usedIElo gnd h(i) by simply setting i = m.
R R j2mki/N Ean. 7-29
h(i) = NkzOH(k)e an.

Eqgn. 7-29 is the IDFT of the filter response. In gen-
eral, the discrete Fourier coefficients are complex;
therefore, H(k) can be represented as:

H(K) = A(k)el®®

where:  A(K) = |H(K)|
so that Eqn. 7-29 becomes:

7-10
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N-1 . . .
h(i) = % z A(k)ej(p(k)eJZ]'[kl/N Eqgn. 7-30
k=0

At this point, the linear-phase constraints, Eqn. 7-25
and Eqn. 7-26, can be applied. The constraint that
the coefficients be real and symmetrical when h(i) is
complex (see Reference 1) implies that:

h(i) = hOIN=1-1)
where:  * signifies the complex conjugate

therefore:

N-1 . . .
hO(N =1 —i) :'[%] Z A(k)e—J(p(k)e—IZT[k(N—1—|)/N
k=0

N-1 . . .
_ % Z A(k)e—J[(p(k)+2nk(N—1)/N]e]2nk|/N
k=0
Egn. 7-31
will be identical to Egn. 7-30 if:
o) = o) -ZEM=Lsom  gorr=012,.
or
o(k) = nr—nk% Eqn. 7-32

What are the constraints on r and A(k) which will
guarantee a purely real response for N even?
Substituting Egn. 7-32 into Eqn. 7-30 yields:
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)ej[nr—nk(N -1)/N+21ki/N]

N-1

N1

h(i) =< 5 Ak
ngo Eqn. 7-33

Expanding Eqn. 7-33 for even N yields:

JT[I’+A(1)e][T[r—T[(N—1)/N+2T[I/N] +

i) = S{A(0)e

+A(N/2)eJ[T[r—T[(N—1)/2+T[I] .

jimr—TqyN-1)(N-1)/N + 21N - 1)i/N] [D
a

+A(N-1)e

Consider the A(k) and A(N-k) terms; if r = O for the
A(k) term and r = 1 for the A(N-k) term, then the ar-
gument for the A(N-k) term is the negative of the
argument for the A(k) term, given that N is even.
That is:

ej[n— TIN-K)(N=1)/N +21¢(N =K)i/N]
ej[T[k(N -1)/N-21Ki/N] ej[T[— TIN-1) + 271
e—j[—nk(N —1)/N+2T1Ki/N] e—j[n(N —2)+2T1]

e—j [-Ttk(N - 1)/N-21ki/N]

Therefore, if A(k) = A(N-k), then all imaginary com-
ponents in Eqn. 7-33 will cancel and h(i) will be
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purely real, which is the desired result. In general,
for N even, the formulas for the frequency sampling
method can be reduced to:

N-1
. 1 jimr — k(N =1)/N + 21ki/N) O
h() = H{AQ)+ S A(k)el! (N=L/N+ ]E
k=1

1 N2-1 jrmr —TIk(N = 1)/N + 271ki/ N +
- 2 J[Tor —Tu - + 2TIKI
= N{A(0)+ z Ak[e
k=1 ej[T[— T(N—k)(N—l)/N+2n(N—k)i/N]]B
a

N/2-1

_ %{A(O)+ z Ak[eJ—T[kN—l/N+2T[kl/N+
k=1

—j[-Tk(N = 1)/N + 21ki/Nj. O
eJ[ ( )/ N+ ]]I:J
0O
N72-1 Tk _jimk/N + 27ki/N
= LA+ 3 Agel eI

k=1 jTk —jimk/N +21ki/N] O

el e 10

O

O N/2-1 O
_ 10 k  mk .0
= =A(0)+2 Z A(k)(-1) cos—(1 +2i)J
N N
| k=1 g
| - g
Eqgn. 7-34

where: r=0for0<k<N/2
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r=1 for N/2 < k< N-1

given
A(K) = A(N=K) for 1 < ks g-l
with
A(N/2) = 0
and
_ o N-1 N _
(p(k) = —T[kT for 0< k < 2 1
oK) = TeTkE o for § +sksN-1

In summary, if a filter with an even number of sym-
metrical real coefficients is desired, then the phase
must be linear, and the frequency response must
be symmetrical about N/2 and zero at N/2 (see Ref-
erence 1).
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(a) Arbitrary Input Specification for Frequency Res

10r telele! 000
N/2
< | o5
T
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ponse Magnitude

-14.5m
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-28m-

0 16
| |

31
|

(b) Necessary Phase Specifications for Frequency Response Magnitude

Figure 7-33 Arbitrary Filter Example

As an example, consider the arbitrary filter speci-
fied in Figure 7-34. In this example, N = 32 and an
arbitrary lowpass and bandpass combination is
specified. Figure 7-34 shows the result of trans-
forming the polar coordinate filter specification into
rectangular coordinates, yielding real and imagi-
nary components of the transfer function. This
transformation is accomplished by treating the
magnitude of H(k) as the length of a vector in polar
coordinates and the phase as the angle. The x
component (real part) is the product of the length
(magnitude of H(k)) and the cosine of the phase.

MOTOROLA

7-15



Likewise, the y component (imaginary part) is the
product of the length and the sine of the phase angle.
This transformation to rectangular coordinates is
necessary to perform the IDFT (or IFFT) calculation:

N-1
h(n) = % )3 H(k)el <O Eqn. 7-35
k=0

where: H(k) is a complex number and 6n = 2rm/N

When the filter's transfer function, H(k), is described
as in Figure 7-34 and Figure 7-34 (i.e., the real part
symmetric about N/2 and the imaginary part asym-
metric about N/2), h(n) is strictly real. If h(n) were
complex, the FIR filter would be much more difficult
to implement since twice as many terms would be
present. Figure 7-35 shows the results of the IDFT
applied to the example arbitrary filter specification.

Note the symmetry of the coefficients in Figure 7-35
(symmetric about (N-1)/2). This symmetry is to be
expected for an even number of coefficients. Eqn.
7-36 has N-1 roots since it is a polynomial of order
N-1. These roots are plotted in Figure 7-36 and
must be found from a numerical algorithm such as
the Newton-Raphson root-finding recursion relation
or the Mueller method (see Reference 18). h(n) can
now be used to specify the filter response in the
continuous frequency domain by setting 8 = 21i/f,.

7-16
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Figure 7-34 Response Transformed from Polar Coordinates
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Figure 7-35 FIR Coefficients from Eqn. 7-17 for Filter Example

Imaginary

O—>» Real

Figure 7-36 Roots (Zeros) of Eqn. 7-36 for Filter Example
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The transfer function has exactly the same form as
the DFT of the h(n), but now the frequency is con-
tinuous up to fg/2:

N-1
H(B) = z h(n)e Eqgn. 7-36

where: 0 = 2nf/fy

g
S
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[
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3 4 5 6 7 8 12 13 14 15 16
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(a) Gain (magnitude of Hz)) Plot
il AN
. R+
D
5
3 | oR
g \\\X\\@n 12 13 14 15
o |.pk
e
314 m
| | | l l
0
(b) Phase Response Corresponding to Gain Plot

Figure 7-37 A 32-Point FIR Filter Example
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The continuous frequency gain and phase re-
sponse of the 32-coefficient example filter, plotted
in Figure 7-37, are generated as follows:

G(8) = |H(8)| = [H(O)HB)] /2

N-1 2 N-1 251/2
= Z h(n)cosne] +{ z h(n)sinnG] 0
n=0 n=0 E
Eqgn. 7-37
and ON-1 q
. S h(n)sinne

©(0) = (_tan_l)%\]l—i—(l)—__% Eqgn. 7-38

0
0 h(n)cosned
[]Z (n) 0
=0 O

where:  h(n) is the value obtained from
or equivalently from Eqn. 7-19

Note that the gain plot (see Figure 7-37) exactly in-
tersects the discrete frequency points originally
specified in Figure 7-34. Clearly, G(6) and ¢(8) have
many discontinuities. Due to the symmetry of linear-
phase FIR filters, analytic expressions can be found
for H(w) as shown in Egn. 7-42 and Eqgn. 7-43.

For comparison, Figure 7-38 shows the log magni-
tude response of the example filter with larger
values of N. The stopband attenuation is not im-
proved as much as expected when the number of
coefficients is increased; however, the sharpness of
the transition band is significantly enhanced be-
cause the approach discussed has implicitly
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assumed a rectangular window function. A smooth-
ing window, w(n), can be used to improve this
situation (see Reference 10).

o 1 0 212 3 24

g | -0
)
& |20
£
2L I
g -40 O-0-0-0-O oooo‘o’o'c
N 6 7 8 9101112131415161718 2526272829303132

0 4 2 314 n

l l | l l

0
(a) N=64
o
z
)
O
<
k<
O]
8
i
0 4 2 34 n
l l | l l
0
(b) N=128
Figure 7-38 Log Magnitude Response of Filter Example with Larger N Values

If h(n) is modified by a window function, w(n), h,,(n)
= h(n)w(n) for 0 < n < N-1, the gain of Eqn. 7-37
(shown in Figure 7-34(a)) can be greatly improved.
The window function, w(n), goes to zero at both
ends (n=0and n = N) and is unity at the center; w(n)
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is symmetrical so as not to disrupt the linear-phase
characteristics of the filter. Figure 7-34(b) uses a
window function described by w(n) = sinz[nn/(N-l)]
(also known as a Hanning window) to demonstrate
the sensitivity of the gain to windowing. w(n) is basi-
cally an envelope function used to taper the ends of
h(n) smoothly. The rounding of the transition-band
edges in Figure 7-34(b) is the trade-off for window-
ing; however, in most applications, this trade-off is
well worthwhile.

(o)==
-10—
g |2 N=128
= | 30
(=)
T | 4o
£ |50
& | -0+
g | -70r
i |-80
0 4 2 314 n
| | | | |
0
(a) Rectangular Window
.01
—~ |-10-
& |20k
2
= |30k SINE? WINDOW
& |40l
3 |-50|-
L |-60|—
-70 |—
-80
0 4 2 314 m
| | | | |
. o) )
(b) Sine 2 (Hanning) Window
Figure 7-39 Window Function Effects on Filter Example
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Window functions have a powerful effect on the stop-
band attenuation as well as the passband transition
slope.The best passband transition slope perfor-
mance is achieved with the rectangular window, but
this window results in very poor stopband perfor-
mance and often severe passband fluctuation (or
ripple). All window functions have the effect of in-
creasing the stopband attenuation and reducing the
passband ripple at the expense of increasing the
width of the transition region. However, for most
window functions, the passband ripple is relatively
insensitive to N. Windowing is described in virtually
any DSP textbook (see REFERENCES). Also, win-
dowing is discussed with practical examples in
Implementation of Fast Fourier Transforms on Mo-
torola's DSP56000/DSP56001 and DSP96002
Digital Signal Processors (see Reference 19).

7.21 FIR Filter Design
Using FDAS

Figure 7-40 shows an example (log magnitude and
impulse response) of a bandpass filter generated with
the FDAS software package using the Kaiser win-
dow. A totally different approach to FIR filter design,
the equiripple method, is based on finding an opti-
mum approximation to the ideal or desired response,
D(8). An optimum approximation can be found be-
cause of the inherent symmetry of the coefficients of
linear-phase filters.
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Recall that the continuous frequency response of
a FIR filter can be found by setting z = el in the
z-transform so that:

N-1 ,
HE) = T h(me ™" Eqn. 7-39
n=0

If the linear-phase factor is factored out, Eqn. 7-39
can be written as:

. N-1 .
H(®) = e—]G(N—l)/Z z h(n)eje[(N—l)/Z—n]
n=0

- e—Je(N —1)/2{h(0)eJG(N -1)/2 + h(l)eje[(N -1)/72)-1] .

h(N=1))e JON-172  p  _ 2y d8IN-1/2)-11,

Eqgn. 7-40
Using Euler's identity, Eqn. 7-40 can be grouped
into sine and cosine terms as follows:

H®) = e ON-D"20 0y 1 h(N=1)] co{e%}

+jh0—hN—1sin[eN2‘1J + [h(l) + h(N_z)]co{ew_l}

+[h(L1) =h(N —2)]sin[e¥—q

Egn. 7-41
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If it is assumed that linear phase is achieved by
even symmetry (i.e., h(n) = h(N-1-n) and that N is
even, reduces to:

. N/2-1
e—je(N—l)/Z

-2
nZO 2h(n)cos[9%\|;§— - n%}

H(8) =

which, with a change of variable, k = N/2-n-1, can
be written as follows:

. N/2-
—jB(N-1)/2 z 2h(n)cos[e __nDJ

Eqn. 7-42

H(8) = e

which is in the following form:

H(e) = Ae)e!"® Eqn. 7-43

where: A(B) is a real value amplitude function
P(6) is a linear-phase function

The linear functions, A(8) and P(8), are to be con-
trasted with the inherently nonlinear absolute value
and arctangent functions in and Eqn. 7-38. For all
four types of linear-phase filters (N even or odd and
symmetry even or odd), A(B) can be expressed as a
sum of cosines (see Reference 21).

Since an ideal filter cannot be realized, an approxima-
tion must be used. If the desired frequency response,
D(B), can be specified in terms of a deviation, d, from
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the ideal response, then the error function in Eqn.
7-44 can be minimized:

IE@®) = " ID(8)~A(®) Eqn. 7-44

by finding the best A(B). Because A(8) can be ex-
pressed as a finite sum of cosines as shown in Eqn.
7-42, it can be shown (see Reference 18) that the
optimal A(B) will be unique and will have at least N/2
+ 1 extremal frequencies, where extremal frequen-
cies are points such that for:

01 <8y<...<Oy,2 <O\ 241

E(®) = -E(6g,1)  fore=1,2,..,5+1

and

)| = g [E®)]

Thus, the best approximation will exhibit an equirip-
ple error function. The problem reduces to finding
the extremal frequencies since, once they are
found, the coefficients, 2h(N/2-k-1), can be found
by solving the set of linear equations:

N/2-1
D(6)5 = A(By) = ¥ Zh%—k—lgco{ee%+%%
k=0

Eqgn. 7-45

The Remez exchange algorithm is used to system-
atically find the extremal frequencies (see
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Reference 5). Basically, a guess is made for the ini-
tial N/2 + 1 extremal frequencies. (Usually, this
guess consists of N/2 + 1 equally spaced frequen-
cies in the Nyquist range.) Using this guess, is
solved for the coefficients and 3. Using these coef-
ficients, A(B) is calculated for all frequencies and
the extrema, and frequencies at which the extrema
are attained are determined. If the extrema are all
equal and equal to or less than that specified in the
initial filter specification, the problem is solved.
However, if this is not the case, the frequencies at
which the extrema were attained are used as the
next guess. Note that the final extremal frequencies
do not have to be equally spaced. Clearly, the equir-
ipple design approach is calculation intensive.

What is the benefit of equiripple designs over win-
dow designs? In general, equiripple designs require
fewer taps for straightforward requirements. When
the specification requires a sharp cutoff and/or a
large stopband attenuation or a narrow bandpass,
the equiripple approach may fail to converge. In
general, when Nis decreased, an equiripple design
tends to maintain its transition band while sacrific-
ing stopband attenuation; window designs tend to
do the opposite. Of the window alternatives, the
Kaiser window is preferred for designing filters be-
cause the passband ripple and stopband
attenuation can be varied relatively independent of
the transition width (see Reference 1). For spectral
analysis, the Blackman-Harris window is preferred
(see Reference 10).
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Figure 7-41 shows an example of an equiripple de-
sign generated from the FDAS software package.
This example is the same as that used for the Kaiser
window example of Figure 7-40. The number of co-
efficients in the equiripple design is far less than that
generated by the Kaiser window method (179 ver-
sus 291). However, the passband ripple is larger.

7.22 FIR Implementation on
the DSP56001

The DSP56001 has several architectural features
that make it ideally suited forimplementing FIR filters:

1. Dual Harvard architecture uses two data
memories with dedicated buses and address
generation units, allowing two addresses to be
generated in a single cycle. If one address is
pointing to data and another address is pointing
to coefficients, a word of data and a coefficient
can be fetched in a single cycle.

2. Modulo addressing makes the shifting of data
unnecessary. If an address pointer is
incremented (or decremented) with the modulo
modifier in effect, data shifting can be
accomplished by just “backing up” the address
register by one to overwrite the data that would
normally be shifted out. This procedure allows
very efficient addressing of operands without
wasting time shifting the data or reinitializing
pointers.
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3. Hardware DO loops execute without overhead
once the loop is started. After a three-cycle
initialization of the DO loop, the body of the loop
executes as if it were straight-line code. Since
the DO loop does not require any overhead
cycles for each pass, the need for straight-line
code is eliminated.

For a four-coefficient example of a linear-phase FIR
filter, the input-output difference equation can be
found by expanding Eqn. 7-16:

y(n) = hgx(n) + hyx(n-1) + hyx(n-2) + h3x(n-3)
Eqgn. 7-46

This difference equation can be realized with the
discrete-time four-tap filter example shown in Figure
7-41. The filter can be efficiently implemented on the
DSP56001 by using modulo addressing to imple-
ment the shifting and parallel data moves to load the
multiplier-accumulator. The filter network is shown
in Figure 7-41(a); the memory map for the filter in-
puts and coefficients is shown in Figure 7-41(b). The
following DSP56001 code is used to implement the
direct form FIR filter:

CIR A XO0X:(RO)+ Y:(R4H+,YO ;Save inputsample, fetch coef.
REP #NTAPS-1 ;Repeat next instruction.
MAC XOYOA X(RO+X 0 VY:(RA+Y0 ;HRFiters.

MACR XO,YOA (RO} ; Round restitand adjust RO.

Register RO points to the input variable buffer, MO
is set to three (modulo 4), R4 points to the coeffi-
cient buffer, and M4 is set to three. The input
sample is in XO.
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The CLR instruction clears accumulator A and per-
forms parallel data moves. The data move saves
the most recent input value to the filter (assumed to
be in XO) into the location occupied by the oldest
data in the shift register and moves the first coeffi-
cient in the filter (hg) into the data ALU.

The REP instruction repeats the next instruction
NTAPS-1 times. Since there are four taps in this fil-
ter, the next instruction is repeated three times.

X:(RO)

x(n)

RO —»

x(n-1)

x(n-2)

x(n-3)

x(n)

(b) Data Structures for Four-Tap FIR Example

MO =ntaps-1
=3

Input Data

(a) Direct-Form FIR Filter Network with Four Coefficients

Y:(R4)

b(0)

RO —

b(1)

b(2)

b(3)

b(4)

M4  =ntaps-1
=3

Filter Coefficients

Figure 7-42 FIR Filter Example
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The MAC instruction multiplies the data in X0 by the
coefficient in YO and adds the result to accumulator
Ain a single cycle. The data move in this instruction
loads the next input data variable into X0 and the
next coefficient into YO. Both address registers RO
and R4 are incremented. The MACR instruction cal-
culates the final tap of the filter, rounds the result
using convergent rounding, and address register
RO is decremented.

Address register R4 is incremented once before the
REP instruction and three times due to the REP in-
struction for a total of four increments. Since the
modulus for R4 is four, the value of R4 wraps
around pointing back to the first coefficient.

The operation of RO is similar. The value input to
the filter is saved, and then RO is incremented
pointing to the first state. The REP instruction incre-
ments RO three times. Since the modulo on RO is
four and RO is incremented four times, the value in
RO wraps around pointing to the new input sample.
When the MACR instruction is executed, the value
of RO is decremented, pointing to the old value, x(n-
3). The next sample time overwrites the value of
x(n-3) with the new input sample, x(n). Thus, the
shifting of the input data is accomplished by simply
adjusting the address pointer, and the modular ad-
dressing wraps the pointer around at the ends of the
input data buffer. Instruction cycle counts for this fil-
ter are NTAPS+3. Thus, for a four-tap filter, seven
instructions are required. u
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