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Preface

The human body has inherently slow perception mecha-
nisms. For instance, when listening to music, or speech; we
do not hear individual pressure variations of the sound as
they occur so quickly in time. Instead, we hear a changing
pitch, or frequency. Similarly, our eyes do not “see” individual
oscillations of electromagnetic fields (light); rather, we see
colors. In fact, we do not directly perceive any fluctuations (or
oscillations) which change faster than approximately 20 times
per second. Any faster changes manifest themselves in terms
of the frequency or rate of change, rather than the change it-
self. Thus, the concept of frequency is as important and
fundamental as the concept of time.
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“...adigital
signal

processor can
efficiently
compute the
Fourier
transform and
perform specific
frequency-
domain tasks. . ”

SECTION 1

Introduction to the
Fourier Integral

1.1 Definition and History

The scientific and engineering communities have at-
tempted to represent changing signals in two
fundamental domains: time and frequency. Temporal
changes are easily shown on oscilloscopes, for in-
stance, where change in time is directly proportional
to distance across a screen. Representation of sig-
nals in terms of frequencies falls under the general
category of “spectrum analysis”, and has generated a
lot of attention recently, due to the increased availabil-
ity of hardware which makes such representations
possible. The first formal approach to spectrum anal-
ysis probably dates back to the work of Fourier, who
showed how to mathematically represent a general
class of time-varying phenomena in terms of sine and
cosine functions of particular frequencies. His work is
best known as the Fourier Integral (inverse Fourier
transform) (see Reference 1):

+oo
X(t) = J’X(f)elzmtdt Eqn. 1-1
+ 00
where: j= /=1 and el2Tt = cos(21ft) + jsin(27tt)
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When interpreted as an infinite summation, the pre-
vious integral is simply a linear combination of a
number of sine and cosine functions (expressed by
the complex exponential), each one of which is
weighted by the complex amplitude X(f). Converse-
ly, the complex frequency function X(f) can be
derived from the time-varying signal x(t) by the Fou-
rier Transform:

+oo
X(f) = [ x(t)e 12T gy Egn. 1-2

+0o0

The two expressions shown in Egn. 1-1 and Eqn.
1-2 define a Fourier transform pair x(t) and X(f).
The Fourier transform X(f) determines the fre-
guency content of the signal in question, while x(t)
shows the way the signal varies as a function of
time. Note that, in general, X(t) can be directly
measured (for instance, displayed on an oscillo-
scope). X(f) remains a mathematical expression
which attempts to express our intuitive perception
of frequency.

Unfortunately, it is not always true that the concept
of frequency, as defined by the Fourier transform
in Eqn. 1-2, and the intuitive concept of frequency
as we perceive it, are identical. For instance, mu-
sic consists of tones (frequencies) which vary over
time. Although we can clearly perceive time-vary-
ing frequencies, Eqn. 1-2 does not allow for
Fourier's concept of frequency to have any time-
varying character— X(f) is a function of frequency
only.

1-2
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1.2 Use of the Fourier
Transform

Because of the basic nature of the frequency con-
cept, practical applications of the Fourier transform
are abundant. As more cost-efficient methods be-
come available to compute the Fourier transform,
the number of practical solutions to frequency-
based problems will grow even larger. In these fre-
quency-based applications, a digital signal
processor can efficiently compute the Fourier trans-
form (as defined in SECTION 1.1 Definition And
History), and perform specific frequency-domain
tasks such as elimination of certain frequency com-
ponents, etc.

Three general types of Fourier transform applica-
tions are:

1. Number-Based [0 Most spectrum analysis
applications require the direct evaluation of
the Fourier transform as in Egn. 1-2. Since
the Fourier transform is a mathematical
expression, these applications are based
on numerical computations, and can be
termed number-based. Examples range
from  spectrum analysis laboratory
instrumentation and professional audio
equipment to velocity estimation in radar.
Note that in number-based applications the
accuracy of the computed numbers is of
vital importance to the performance of the
overall system. For instance, the quality-
conscious audio industry requires 16-bit or
more precision in order to eliminate audible
distortion.

MOTOROLA 1-3



2. Pattern-Based O Many problems involve
the recognition and detection of signals
with a specific frequency content (a
predefined  spectral  pattern). For
instance, speech consists of segments of
sound with very specific frequency
characteristics. In this type of application,
the conversion to the frequency domain is
often only a single step in the overall task.
It is important that this conversion process
be as fast as practical, to allow for
sufficient time to perform computationally
intensive pattern matching techniques. In
addition to providing fast Fourier
transform computations, the processor in
guestion needs to be fast at general-
purpose DSP tasks so that it can perform
a variety of frequency-based calculations
for pattern matching.

3. Convolution-Based [ The third class of
applications of Fourier transforms uses the
transform as a simple mathematical tool to
perform general filtering in a very efficient
manner. This concept is based on the
property that the Fourier transform of the
convolution of two time-signals:

+0o0

y(® = [ x(t-Dh(m)dt Egn. 1-3

+0oo

is equal to the product of the individual
transforms:

Y(f) = X(HH(f) Eqn. 1-4

Egn. 1-3 (better known as the convolution integral)
represents the output of a linear filter with impulse
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response h(t) and input signal x(t). Clearly, in the fre-
quency domain, the output of a filter can be obtained
by a simple multiplication, whereas in the time do-
main, a more complicated convolution integral
needs to be solved. The amount of computation in-
volved in evaluating the integral in Eqn. 1-3
becomes particularly large when the impulse re-
sponse h(t) has a long time duration which often
prevents real-time implementation. Clearly, if the
Fourier transform X(f) of the signal can be computed
efficiently, the filtering operation itself can be
achieved by simple multiplications.

The combined number of computations (for comput-
ing the Fourier transform, for filtering in the
frequency domain, and for obtaining the inverse
Fourier Transform) is often less than the total num-
ber of calculations required to compute Eqn. 1-3
directly. This is especially true when the filter in
guestion performs a simple frequency discrimination
function (lowpass, bandpass, highpass, bandreject,
etc.). In this case, the multiplications in the frequen-
cy domain can be replaced by a simple masking
operation, which removes the stopbands and leaves
the passband(s) unchanged.

Although no direct frequency information is extract-
ed from the signal, the Fourier transform is used as
a mathematical tool for fast-filtering applications.
Note that again, fast Fourier transform and inverse
Fourier transform “engines” are needed in order to
provide the real-time filtering operation.
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In summary, the basic nature of the frequency con-
cept indicates that the number of possible
frequency domain applications is as large as more
conventional time domain applications. In the past,
frequency domain applications were either difficult
to implement or could not be realized in a cost-effi-
cient manner because of the lack of low-cost, high-
performance hardware. This application note dem-
onstrates that the DSP56001/2 and the DSP96002
Families of digital signal processors fulfill the de-
manding requirements imposed by frequency
domain problems. In addition to providing a fast im-
plementation of high-precision Fourier transform
computations, the general-purpose nature of the in-
struction set allows for a complete, single-chip,
low-cost integrated solution to a wide variety of fre-
guency domain problems. [ ]
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“...theresults
need to be
available within
afinite time
period, and the
infinite
summation
must somehow
be reduced to a
finite
summation.”

SECTION 2

The Discrete Fourier
Transform

2.1 The Discrete-Time Fourier
Transform (DTFT)

|n order to compute the Fourier transform using digi-
tal hardware, Eqn. 1-2 needs to be approximated in a
manner which makes machine computation feasible.
The first step in this process consists of eliminating
the theoretical integral symbol, and replacing it by a
computable sum:

+o00

XMH=XH =T ¥ x(ne

n=-oc0

~j2minT Eqn. 2-1

The above expression uses a sampled signal x(nT),
where the sampling period T is made as small as pos-
sible to reduce approximation errors. Appropriately,
>~((f) is called the discrete-time Fourier transform (DT-
FT). As T (the sampling period) becomes infinitely
small, the previous summation approaches the origi-
nal Fourier transform in Eqn. 1-2. To assess the
accuracy of this approximation, note that the resulting
expression for X (f) is a periodic function of frequency:

~ _ ~ 1D
X(f) = X%* T Egn. 2-2
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-H2nfnT+j2m
e

because:

T Eqgn. 2-3
T = g2nfnTg-j2mn — o-j2nfnT

In general, the original spectrum X(f) is not periodic,
and the approximation is only justified for a range of
small values of f. In Figure 2-1, the DTFT magnitude
and the Fourier transform magnitude of a simple
rectangular function are shown for several values of
the sample rate fs = 1/T . Note the periodic na-
ture of the resulting function, as well as the
approximation errors due to the sampling process.

The Nyquist sampling theorem gives a well accept-
ed criterion for the sampling rate. It states that a
signal needs to be sampled faster than twice its
highest frequency. In other words, if:

X({f) =0 Eqgn. 2-4

for |f| = B (B is referred to as the bandwidth of the sig-
nal), then the sampling frequency needs to satisfy:

fsz 2B Eqgn. 2-5

In practice, signals rarely satisfy Eqn. 2-5, and
some error, called the aliasing error, can be expect-
ed in the evaluation of X(f). The aliasing error is
generated by frequency components at higher fre-
guencies, which manifest themselves at lower
frequencies because of the periodic nature of
5((f) (aliasing). The aliasing error can be reduced by
filtering out the higher-frequency components of the
signal using a low-pass anti-aliasing filter and/or by
increasing the sampling rate.

2-2
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Figure 2-1 Fourier Transform of a Rectangular Function
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2.2 Windowing and
Windowing Effects

The discussion of aliasing errors illustrates how
the Fourier transform can be approximated by an
infinite summation. In practice, the results need
to be available within a finite time period, and the
infinite summation must somehow be reduced to
a finite summation. One obvious way to reduce
the infinite summation is by simply truncating the
sum in Eqn. 2-2 to N terms as:

. N-1
X =T Z x(nT)e
n=0

-j2minT Egn. 2-6

This truncation is frequently referred to as “window-
ing” because an infinite summation is viewed
through a finite window. The resulting transform is
called the windowed discrete-time Fourier trans-
form (WDTFT). In mathematical terms, windowing
is simply the multiplication of the signal by a window
sequence of finite-length, w(n). In the simple case
above, w(n)=1 for 0<n<N-1; otherwise, w(n)=0.
Because of its rectangular shape, the window
shown above is called the rectangular window.

Unless the signal in question is of finite duration,
this truncation will introduce other errors, resulting
in a number of artifacts in the spectrum. To assess
the effect of the windowing operation, a simple sine
wave of the form:

X(t) = sin(2m1000t) Eqn. 2-7
is sampled with a sampling frequency of 4000 Hz,
and the windowed DTFT is computed with N=20.
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Figure 2-2 shows the result of windowing a sine
wave by a rectangular window. Windowing causes
the following errors:

1. Leakage O Even though the input signal
consists of a single-frequency component
at 1000 Hz, the result clearly shows
components at frequencies other than
1000 Hz. This is called the leakage effect: it
appears as if energy has “leaked” from
1000 Hz to the rest of the spectrum.

2. Smoothing O Although the theoretical
transform exhibits an infinitely narrow, and
infinitely large peak at 1000 Hz, the actual
peak has finite magnitude and exhibits
finite width. It appears that the narrow peak
has been “smeared” out in the frequency
domain as a result of the windowing
function in the time domain. This effect is
appropriately termed the smoothing effect.

3. Ripple O The overall magnitude plot in
Figure 2-2 shows an oscillatory character
not present in the original Fourier transform:
this is called the ripple effect. The origin of
the ripple effect lies in the discontinuity
(abrupt start and end) introduced in the
signal by the window. Windows with more
gradual transitions generally have lower
sidelobes and less ripple.

In general, a tradeoff exists between these different
effects, and the advantages of an appropriate win-
dowing function can be chosen for a specific
application. For an excellent summary of existing
windowing functions and their properties, see Ref-
erence 2.
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2.3 Sampling the Frequency
Function

The windowed DTFT is now ready for machine
computation, with one exception: the independent
frequency variable f is still a continuous variable,
and needs to be captured in discrete intervals, or
sampled. Since the DTFT is periodic in the frequen-
cy domain with period fg, only values of f from 0O to
fs (the sampling frequency) need to be computed.
Although there are similar arguments concerning
the distance between successive frequency sam-
ples as in the case of time-sampling, it turns out that
when the WDTFT is sampled every f;/N Hz, fast al-
gorithms for computing the transform can be
derived. Note that in this case, the number of sam-
ples in the window (N) and the number of samples
in the frequency domain (N) are equal. The result-
ing transform is called the discrete-time Fourier
series (DTFS):

N-1 ALY

XN =T S x(nT)e N Eqn. 2-8
n=0

The inverse DTFS is given by:

N1 jZW”nk
XN(k) = NT z xN(k)e Egn. 2-9
k=0

Keep in mind that the values of the frequency sam-
ples of f, are equal to [fs/N] k.
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Note that many textbooks simply define the Dis-
crete Fourier transform (DFT) Xp(k):

N-1 -jzﬁnnk
Xy(k) = Z x(nT)e Eqn. 2-10
n=0

with inverse transform:

N1 j?NiTnk
XN =5 > Xnke Eqn. 2-11
n=0
Obviously, the DFT and DTFS differ only by a scal-
ing factor of T, making the spectrum independent of
the sampling period. Consequently, explicit T de-
pendence can be dropped from Eqgn. 2-11.

Although the sequence xy(n) corresponds to the
original sampled and windowed sequence x(nT)
for sampling instants 0 through N-1, the complete
sampled sequence x(nT) for any n cannot neces-
sarily be recovered from it. Indeed, xy(n) appears
to be periodic with period N due to
ALY

the periodicity of e , Whereas the original
sampled signal was not assumed to be periodic.t

1 The error introduced in the time domain by sampling a frequency
function is termed “aliasing in time” which is analogous to the “aliasing in
frequency” caused by sampling a time function. (See SECTION 2.1 The
Discrete-Time Fourier Transform (DTFT)). That is, if a frequency
spectrum is not sampled densely or closely enough, the signal
constructed in the time domain through the inverse “discrete-frequency
Fourier transform” will show some distortion.
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This must be kept in mind in convolution-based
applications, where the forward as well as inverse
transforms are used; the incoming signal stream
needs to be segmented, and the computed signal
segments need to be pieced together to construct
the complete output stream. Most basic text-
books on digital signal processing discuss
techniques for piecing together the output stream
(see Reference 3). ]
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“Since there
are two
independent
variables (time
and frequency)
in the Fourier
transform,
dividing (or
decimating) the
DFT into smaller
ones can be
done in two
ways.”

SECTION 3

The Fast Fourier
Transform

3.1 Motivation

Upon closer examination of Egn. 2-10, it becomes
clear that for every frequency point, N-1 complex
summations and N complex multiplications need to
be evaluated. Since there are N frequency points to
be evaluated, this gives a total of N(N-1) complex
sums, and N? complex multiplications. Counting two
real sums for every complex one, and four real multi-
plications plus two real summations for every
complex multiplication, gives a total of 4N?- 2N real
summations and 4 N2 real multiplications.

The above numbers grow rapidly for increasing N. For
N=1024 (1024-point DFT), 4,194,304 real multiplica-
tions are required. If this is computed on a DSP56001/
DSP56002 with a 27-MHz clock, it takes 0.31 sec-
onds just to execute that many real multiplications.
Since the DFT computation needs to be completed by
the time the next 1024 data points are collected for
real-time performance, the sampling rate is limited to
a maximum of 3.3 kHz. Obviously, faster solutions are
needed.

MOTOROLA
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3.2 Divide and Conquer

A faster algorithm for computing the DFT can easily
be derived. The principle behind this is very simple.
As illustrated in Figure 3-1, a square of half the linear
dimension of a larger square has one-fourth the sur-
face area. This is because the surface area is
proportional to the square of the linear dimensions of
the square. Similarly, the number of multiplications
needed to compute the DFT is proportional to the
square of the DFT's length (N). Thus, if we could re-
place the DFT over N points by two DFTs over N/2
points, computations would be reduced in order of
magnitude of 0.5 (=0.25+0.25).

Figure 3-1 The FFT principle in layman’s terms

Since there are two independent variables (time
and frequency) in the Fourier transform, dividing (or
decimating) the DFT into smaller ones can be done
in two ways. We can attempt to represent an N-
point transform in terms of DFTs over half the num-
ber (N/2) of time-samples. This approach is

3-2
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appropriately called the decimation-in-time or DIT
approach. Alternatively, the N-point DFT can be
represented in terms of DFTs with N/2 frequency
samples. This approach is called the decimation-in-
frequency or DIF approach.

3.3 The Decimation-in-Time
and Decimation-in-
Frequency Radix-2
Fast Fourier Transforms

It is easily shown that Eqn. 2-10 can be rewritten
when N is even as:

. 2T 27T . 2T
N/2)-1 - =—(N/2)-1 _
« _( ) - j(N/z)rk jN( ) « J(N/?_)rk
N =S x(@me S X[ar+1)Tle
r=0 r=0

Egn. 3-1

As illustrated in Figure 3-2, this expression shows
how two N/2-point DFTs can be combined to obtain
one N-point DFT. If N is an integer power of 2, this
process can be repeated, as shown in Figure 3-3 and
Figure 3-4, until a simple, two-point DFT is obtained.
This gives rise to the flow diagram of a DIT fast Fou-
rier transform (FFT) as shown in Figure 3-5, which
represents a complete 8-point FFT computation.
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x(0) + x(0)
+
() N/2 - point + x()
DFT /
x(4) N+ x(2)
2/IN/4
6 +
x(6) }% x(3)
x(1) NN x(4)
@) N/2 - point 5NN+ X©)
DFT
X(5) 6/N N\ x(6)
x(7) TINNE x(7)
Figure 3-2 Decimation-in-Time of an N-Point
x(0)
N/4 - pt
DFT
x(4)
x(2)
N/4 - pt 4N
DFT
X(6) &N

Figure 3-3 Decimation-in-Time FFT: Step Two

2TT
NOTE: k/N denotes multiplication by the “twiddle factors” _JWK throughout this document

e
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+
x(0) +
X(4) +
Figure 3-4 Decimation-in-Time FFT: Final Step
(2-Point DFT)

X(0)
(4 4IN
(4) %\ 1N

x(2) 2N 2N
4IN 6/N

X(6) T

x(1) 4/
4IN 5/N

X(3) 5

x(5) 4/N 6/N

X(7) 4N 6IN 7IN

x(0)

X(1)

X(2)

X(3)

X(4)

x(5)

X(6)

x(7)

Figure 3-5 An 8-point, radix-2, Decimation-in-Time FFT
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The basic flow diagram of Figure 3-5 can be further
simplified by rearranging the terms in the basic
building block (the butterfly) as in Figure 3-6. Also,
it is seen from Figure 3-5 that input samples no
longer occur in normal, sequential order. When the
indices are represented in their binary equivalent,
however, the input samples appear in “bit-reversed”
order. Figure 3-8 shows how the diagram can be re-
arranged for normally-ordered inputs and bit-
reversed outputs.

B B’

Figure 3-6 Rearrangement of the “butterfly
building block of the DIT FFT

et
B B’

Figure 3-7 Rearrangement of the “butterfly”
building block of the DIF FFT
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Binary Binary
Index Index
000 x(0) ++ + +  x(0) 000
+
001 x(1) ++ ++ ><' X(4) 100
010 x(2) ++ +  x(2) 010
- +
011 x(3) s o +  x(6) 110
+ - -
100 x(4) \ + t_x(1) 001
101 x(5) * + N +  x(5) 101
A — :
110 x(6) _+2/N + tox@ o1
111 x(7) ANPTY * o3 r ox(7 1

Figure 3-8 Rearrangement of the DIT computation of Figure 3-6

Figure 3-9 and Figure 3-10 show how the DFT with
N frequency points can be obtained in terms of
DFTs with a smaller number of frequency samples
(decimation-in-frequency FFT). Note that the basic
building block (butterfly) is different than for the DIT
case (see Figure 3-10).
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x(0) + X(0)
+
x(1) + N/2 - point X(2)
% —
DFT
x(2) + L x4
+
X(3) + L x5
+
X(4) ¢ (¢ )|
X(5) J_, N/2 - point X(3)
DFT
x(6) r X(5)
X(7) N L xD

Figure 3-9 Decimation-in-Frequency concept

x(0) + Al + x(0)
+

x(1) /:' /: T x(4)

X(2) /: >< + X(2)
- +

x(3) /: + 2IN + x(6)

(0 S + .

x(5) >Q< NI TY /i >< x(5)

X(6) T am >©< * x(3)

X(7) 3N \ 2/N >< x(7)

g E K/IN DIF Butterfly

Figure 3-10 Complete 8-point radix-2 DIF FFT
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3.4 The Decimation-in-
Frequency Radix-2
Fast Fourier Transforms

If Egn. 2-10 is decomposed from the frequency do-
main, we can show the following equations exist:

(N/2)-1 _'%‘
/
Xn(2K) = Z [X(r) +x(r+N/2)]e
r=0 Eqn. 3-2
Xg(2k+1) = 3 [X()X(r+N/2)]e ‘e
r=0
Egn. 3-3
The decimation in frequency butterfly is shown in
Figure 3-9. [
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SECTION 4

Complex FFT on the
Motorola DSP Family

4.1 Required Hardware
Support for FFT
Calculation

“In general, The basic building block of the DIT FFT routine is the
doubling the butterfly computation shown in Figure 3-6. Conse-
points in guently, the architecture and instruction set of a DSP
butterflies of device should allow efficient computation of this basic
FFT reduces the butterfly. Since the butterfly consists of additions and
number of multiplications, a hardware adder/subtracter and mul-
groups in each tiplier is crucial. The DSP56001/2 and the DSP56156
pass and the provide a multiplication and addition instruction, or
number of MAC, which is beneficial to most DSP applications in-
passes.’ cluding FFT, with no increase in silicon cost. The
DSP96002 supports FFT calculation capability by
adding subtraction to the MAC function, which pro-
vides the multiplication, addition and subtraction
instruction, FMPY||ADD||SUB.

Since the butterfly calculation requires complex da-
ta, the architecture must easily support complex
arithmetic. The input and output data to the butter-
flies are moved between the processor's arithmetic
unit and memory. Consequently, efficient moves are
needed.

MOTOROLA 4-1



DSP56001/2 and DSP96002 hardware feature two
data memory modules; X and Y. The real compo-
nent and imaginary component of a complex
number can be stored in the X and Y memory mod-
ules respectively. Also, the DSP56001/2 and the
DSP96002 can perform dual reads and dual writes
in one instruction cycle. In contrast, the DSP56156
has only one data memory module, X, where both
real and imaginary components of the complex data
are stored. To support complex number fetch, the
DSP56156 provides dual memory read, where in
one instruction, it reads the X memory twice if the
specified address registers are used.

The overall FFT algorithm is an array of many such
butterflies, and the size of the array depends upon the
number of points (N) in the FFT. In order to write gen-
eral FFT routines (for any N of the power of 2), efficient
implementation of the repetitive execution of the basic
butterfly element is important. Although FFTs may be
calculated on general-purpose microprocessors, typi-
cally, a great deal of software overhead is involved. A
hardware solution, using hardware designed to effi-
ciently implement the calculation of FFTs, would be
generally preferred in a realtime system.The
DSP56001/2, DSP96002, and DSP56156 feature a
zero-overhead DO loop instruction. After the loop is
set up (three instruction cycle time), each iteration
takes no additional cost in overhead.

In real-life applications, time as well as frequency data
is used in normal order, even though the diagram of
Figure 3-7 delivers the frequency data in bit-reversed
order. Thus, an efficient method for bit-reversed ad-
dressing is needed while avoiding time-consuming

4-2
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software solutions that modify the addressing order.
The DSP56001/2, DSP96002, and DSP56156 all fea-
ture a bit-reversed addressing mode.

Some FFT algorithms, (for example, radix-4 FFT)
require several registers to hold immediate results.
The number of registers available on the DSPs is
critical for computation intensive applications since
storing and restoring intermediate results to and
from memory will take more processing time than if
the results are available in on-chip registers.

The input data (time samples) of the FFT is usually
obtained from an external source such as an A/D
converter. This data collection must occur in parallel
with the FFT computation to make real-time perfor-
mance possible. Consequently, a DSP device must
provide easy interface with a variety of A/D convert-
ers, and must support low-overhead interrupt
schemes which can load data from an external de-
vice with minimal impact on the FFT computation.
The DSP56001/2, DSP96002, and DSP56156 all
feature a variety of peripherals on chip. More details
about real-time data acquisition are discussed in
SECTION 7.

The key points to implementing efficient FFT calcu-
lation using programmable DSPs are summarized
below.

FFT calculation requires:
1. MAC or, ideally, FMPY||ADD||SUB instruction

2. Dual memory read and write in one instruction
cycle

3. Zero-overhead loop instruction

MOTOROLA 4-3



4. Bit-reversed addressing mode
5. Sufficient number of registers

6. Fast I/O to provide real time data (in real-time
applications)

4.2 Radix-2 DIT and
DIF Butterflies

Theoretically, radix-2 decimation in time (DIT) butter-
flies and decimation in frequency (DIF) butterflies have
the same computational complexity: three additions,
three subtractions, and four multiplications. Since most
DSPs have only one hardware multiplier, the minimum
cycle time for multiplication for one DIT or DIF butterfly
is four instruction cycles. However, on the DSP56001,
a MAC instruction can implement one multiplication
and one addition in parallel in a single instruction cycle.
Four of the six additions or subtractions in a DIT butter-
fly can be executed in parallel with four multiplications,
and two more additions are required to finish the DIT
butterfly calculation. Due to data dependence, a DIF
butterfly can implement only two additions in parallel
with two multiplications. Thus, one DIF butterfly calcu-
lation requires four multiplications plus four additions
(see Figure 4-3).

The DSP96002 features a special instruction,
FMAY||ADD||SUB, which can implement either a DIT
or a DIF butterfly in four instruction cycles. Although
the DSP56156 has a MAC instruction, the lack of a
dual memory write operation plus constraints on ad-
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dress pointer updates in dual memory read operations,
causes the DIT butterfly and the DIF butterfly to both
take eight instruction cycles.

In short, the Motorola DSP architecture implements
the more efficient DIT butterfly, since it generates
shorter cycle time than the DIF. The following discus-
sions assume a radix-2 DIT, extending to radix-4 DIT
in later sections.

Binar Binar
m' dexy pass 1 pass 2 pass 3 Inl dexy
000 x(0) + + + x(0) 000
AL INAT I
001 x(1) ull + " x(4) 100
010 x(2) /4+ ><><+ + | x(2) 010
NCVANIND=¢
011 x(3) + " o * x(6) 110
+ - -
A + +
100 x(4) >©<\ - ><+ x(1) 001
101 x(5) \ /4++ N  x(5) 101
110 x(6) \f 21 >©<+ +ox@ ou
111 x(7) \_"“ 2N \* 3N ><(_+ x(7) 111
Figure 4-1 Grouping of Butterflies in the FFT Calculation
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4.3 Complexity of a Radix-2
DIT FFT

The number of instructions required in a radix-2 DIT
FFT is determined by the number of instructions in
the butterfly core and the structural overhead of the
DSP. If only arithmetic operations are counted in
term of the multiplications and additions, a triple-
nested implementation of the FFT (see next sec-
tions) requires the following number of instruction
cyclesforN = 2

m x N/2 x BFLY Eqgn. 4-1

where BFLY is number of instructions for calculating
a complex input butterfly. For the DSP56001/2, the
DSP96002 and the DSP56156, BFLY is 6, 4, and 8
respectively. On the DSP96002, for example, a
1024-point complex FFT needs 10 x 512 x 4 =
20,480 instruction cycles.

4.4 Implementation on
Motorola's DSP56001

4.4.1 DSP56001 Architecture

The DSP56001 (see Reference 4) was the first mem-
ber of the Motorola Digital Signal Processor line. It
features 16.5 million instructions per second (MIPS)
with a 33 MHz clock.
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Port A
Memory
Expansion

Bus

Address\

Y Address Bus > /
X Address Bus >
Address External |16
P?)rrt B Arithmetic Program Address Bus Address
Unit (AAU) Bus
Host = :gx Switch
A 4
15 Program X Memory Y Memory
On-Chip
/ Peripherals: * 512 x 24 256 x 24 256 x 24 Bus 7
Host, SSI, RAM RAM RAM Controller /
SClI, PI/IO 256 x 24 256 x 24
<}:{> ROM ROM
Data
9 Internal Data /
/ Bus Switch External /
and Bit Data Bus | 24
Manipulation Switch
Unit
Port C < :>
&/ or
SSl,
SCI
Program Program Program Data ALU
Address 0 Decode « Interrupt 24 x 24 + 56 [] 56-Bit Mac
Generator Controller Controller
Two 56-Bit Accumulators
Program Controller T T T
Clock
Generator
IRQB/MODB
IRQA/MODA -
16 Bits
XTAL RESET 24 Bits
EXTAL

Figure 4-2 DSP56001 Architecture Block Diagram
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The data paths are 24 bits wide, thereby providing
144 dB of dynamic range. More importantly, interme-
diate results are held by a 56-bit accumulator which
gives more accuracy in noise sensitive applications.
The data ALU, address arithmetic units, and program
controller operate in parallel so that an instruction pre-
fetch, a 24x24-bit multiplication, a 56-bit addition, two
data moves, and two address pointer updates using
one of three types of arithmetic (linear, modulo, or bit-
reversed) can be executed in one instruction. Three
on-chip peripherals (Serial Communication Interface,
Synchronous Serial Interface and Host interface), a
clock generator and seven buses (three address, four
data) make the overall system functionally complete
and powerful. The architecture of DSP56001 is
shown in Figure 4-2.

DIT Butterfly DIF Butterfly

TI=ArBWr  (MAC) Ar=Ar+Br (ADD)
A'=TI4BWI  (MAC) T1=Ar-Br (SUB)
Br=2Ar-Ar (SUBL) A'=A+Bi (ADD)
T2=AHBWI  (MAC) T2=AiBi (SuB)
AIST24BMWE  (MAC) =TI (MPY)
BI'=2A-AP (SUBL) BreT3+Towi - (MAC)

T4=T2Wr (MPY)

Figure 4-3 A radix-2 DIT butterfly needing less
instruction cycles than a radix-2 DIF

butterfly
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4.4.2 DIT Butterfly Kernel on DSP56001

The parallel architecture and the instruction set of
Motorola's DSP56001/2 lend themselves particular-
ly well to the radix-2 DIT FFT computation.The DIT
butterfly equations are programmed on Motorola's
DSP56001/2 as given below:

A=A +B,W, + B W, Eqgn. 4-2
A'j = A+ B W- B, W
B, = 2A, - A,
B'i = 2Ai - A,i
where: i represents an imaginary component

r represents a real component
* symbolizes output items

The basic butterfly “core” is implemented by assem-
bly language in Figure 4-4. Note that the previous
DSP56001/2 equations are written in this particular
form such that the instruction to shift left and sub-
tract accumulators (SUBL) can be used. This SUBL
instruction allows efficient implementation of the
DIT butterfly in a two-accumulator ALU.

;rOOA

r10B

r40dC

;r50D

nmac x1,y0, b y:(ri)+ vyl ;A - BWOb,B Oyl
nacr -x0,y1,b  ax:(r5+ vy:(r0),a ;A - BW+BWIb A Oa
subl b, a x: (r0),b byy:(rd) ;2A - bOa A Ob

nac -x1,x0, b x: (rO)+a ay:(rb) A +BW Ob A Oa

nacr -y1,y0, b x: (r1),x1 A +BW +BWD0ODb, B [x1
subl b, a b,x:(rd)+ vy:(r0),b ;2A - bOa A Ob

Figure 4-4 The radix-2, DIT butterfly kernel on the DSP56001/2
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The kernel shown in Figure 4-4 executes in six in-
struction cycles, or a total of 12 clock cycles. This is
made possible because of the parallel architecture of
the DSP56001/2, which allows up to two data ALU
operations (multiply/accumulate) in parallel with two
data moves to/from memory and two pointer updates
in a single instruction cycle. The dual data spaces X
and Y with the appropriate X and Y buses are ideally
suited for complex arithmetic; the real components
are stored in X memory and the imaginary compo-
nents are stored in Y memory.

The simplest way of combining all of the butterflies
into a complete program is shown in Figure 4-1. The
FFT diagram is first divided into FFT passes. On each
pass, the data is fetched from memory, the butterfly
calculations are done, and the results are moved
back out to memory. It is easily shown that there are
log2N passes. Within each pass, the butterflies clus-
ter in groups. From one pass to the next, the number
of groups doubles, while the number of butterflies per
group is divided by two. Note that the twiddle factors
are the same for all butterflies within each group, and
that the order of the twiddle factors from one group to
the next is bit-reversed. This is easily implemented on
the DSP56001/2 by setting the appropriate modifier
register (m6) equal to zero and the offset register (n6)
equal to N/4 (= coefficient table size/2), such that the
twiddle factors are addressed in bit-reversed manner.

This gives rise to the simple, triple-nested DO loop
program shown in Figure 4-5. The outer DO loop
steps through passes, the middle loop goes through
all of the groups within a pass, and the inner loop cy-
cles through all of the butterflies inside a group. The
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DSP56001/2 is particularly well suited for looped program ex-
ecution because it has hardware DO-loop capability. Once a
loop is entered through the DO instruction, this loop is execut-
ed without any time penalty. The resulting program takes 40
words in program memory. This is the most compact imple-
mentation of the radix-2 DIT FFT. A 1024-point complex FFT
using this code executes in 4.72 ms when using a 27-MHz
clock.

; This programoriginally available on the Mtorola DSP bul | etin board.
;1t is provided under a DI SOLAI MER CF WARRANTY avai | abl e from
; Motorola DSP Qperation, 6501 Wn Cannon Drive W, Austin, Tx., 78735.

;Radix 2, In-Pace, Decinmation-In-Time FFT (smallest code size).
ELast Update 30 Sept. 86 Version 1.1

fftr2a nacr o points, data, coef
fftr2a i dent 1,1

;Radix 2 Decimation in Tine In-Place Fast Fourier Transform Routine
; Conpl ex input and output data
Real data in X menory
Imaginary data in Y nenory
Normal |y ordered input data
Bit reversed output data
Coef ficient |ookup table
- Cosi ne val ues in X nmenory
-Sine values in Y nenory

EMacro Call - fftr2a points, data, coef

; points nunber of points (2-32768, power of 2)
data start of data buffer
coef start of sine/cosine table

;Alters Data ALU Registers
x1 X0 yl yo
a2 al a0 a
b2 bl b0 b

EN ters Address Registers
; no

ro no

rl nl i
n2

r4 n4 m

r5 né n%

ré né 13

Figure 4-5 A Simple, Triple-Nested DO Loop Radix-2 DIT FFT
on DSP56001/2 (sheet 1 of 2)
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;Alters Program Control Registers
;. pcsr
;Uses 6 | ocations or System Stack
; Latest Revision Sept enber 30, 1986
;r0 points to A
;rl points to B
;T4 points to C
;r5 points to D
;76 points to twiddle factor nove
# points/2,n0;initialize butterflies per group
nove #1,n2 ;initialize groups per pass
nmove # points/4,né ;initialize C pointer offset
nove #-1, no ;initialize A and B address nodifiers
nove no, nl ;for linear addressing
nove no, mt
nove no, mb
nove #0, N6 ;initialize C address nodifier for
;reverse carry (bit-reversed) addressing
;Performall FFT passes with triple nested DO | oop
do #(acvi (al og(poi nts)/ (al og(2)+0.5) _end_pass
nove #data, r0 ;initialize Ainput pointer nove
ro, r4 vinitialize A output pointer |ua
(r0)+n0, r1[;initialize B input pointer nove
#coef,r6;initialize Cinput pointer
| ua (r1)-,r5 ;initialize B output pointer
nove no, nl1 ;initialize pointer offsets nove
no, n4
nove n0, n5
do n2, _end_grp
nove x:(r1),x1y: (r6),y0 ;1 ookup -sine and
;- cosi ne val ues
nove x:(r5),a y:(r0), b ;prel oad data
nove x: (r6)+n6, x0 ;update C poi nter
do no, _end_bfy
nac x1,y0, b y:(r1)+vy1 ;Radix 2 DT
;butterfly kernel
nmacr -x0,y1, b a, x:(r5)+ y:(r0),a
subl b, a x:(r0),b b,y:(r4)
nac -x1,x0, b x:(r0)+ a a,y:(r5)
nmacr -yl,y0,b tx:(rl),x1
subl b, a b, x: (r4)+ y:(r0),b
_end_bfy
nove a, x:(r5)+n5 y:(rl)+nl,yl ;update A and B pointers
nove x: (r0)+0,x1 vy:(r4)+4,yl
_end_grp
nmove no, bl
| sr b n2,al ;divide butterflies per group by two
I sl a b1, n0 ;multiply groups per pass by two
nove al, n2
_end_pass
endm

on DSP56001/2

Figure 4-5 A Simple, Triple-Nested DO Loop Radix-2 DIT FFT

(sheet 2 of 2)
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4.5 Implementation on
Motorola's DSP96002

4.5.1 DSP96002 Architecture

DSP96002 is a 32-bit floating-point digital signal pro-
cessor with 20 million instructions execution per
second using a 40 MHz clock. The data ALU provides
full conformance with the IEEE 754-1985 Standard for
Single Precision Binary Floating-Point Arithmetic. Sin-
gle Extended precision with a 32-bit mantissa and 11-
bit exponent is also implemented. The data ALU, AGU,
and program controller operate in parallel within the
CPU so that an instruction pre-fetch, up to three float-
ing point operations, two data moves, and four address
pointer updates using one of three types of arithmetic
(linear, modulo, and reverse carry) can all be executed
in one instruction cycle.

Also, an on-chip dual channel DMA controller gener-
ates two addresses, using one of the three types of
address update arithmetic so that a memory-to-mem-
ory or memory-to-peripheral transfer can occur in
parallel with the CPU operation during each instruction
cycle. Host interface circuitry on each port provides a
flexible slave interface to external processors and/or
DMA controllers for easy design of a multi-master sys-
tem. Designed primarily for image processing, real-
time data acquisition, sonar signal processing, radar
signal processing, medical image analysis, and video
compression, the DSP96002 has the widest data
bandwidth of any DSP currently on the market. A spe-
cial FMAY||ADD||SUB instruction makes FFT
calculations extremely fast on the DSP96002.
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Address Dual Channel
Generation (A N DMA
Unit —/|  Controller
A
ADDRESS ADDRESS
32 v 32
External — Eétdemal
Address —] — ress
e e T
Switch | — P Switch
{ K || )
4 Control Control
19 CACHE 19
<#> Bus Control Bus
Control Control #‘5
vy
X Data | | Y Data
PORT| N RAM RAM
AL ot ¢ th?§;§ Progriam |512x32 | |512x32 :V'\ . K—] PORT
p — os
Interface| &2;:"2 1024x32 [1024x32] [1024x32] Interfacel
Cosine Sine
:> c: ROM || ROM ﬁ (::
AV4 - @ D@ @ \
N | 14
7 . Y N
External —— ) E)Sgigal
<.:> Data /‘——A - X N N Bus /‘—:">
Bus MM v| Switch
32 Switch i || =] | 32
Data Nt — -y
YA AV G
V

CLK
Clock Internal
Data Bus ||| Program || Program || Program Data ALU

Switch and Address || Decode || Interrupt || | * IEEE Floating Point
Bit Generator||Controller||Controller || | * 32x32 Integr ALU
Manipulation

OnCE Unit Program Control Unit“‘

A Il MODA/IRQA

4 Serial DA
Debug MODB/IRQB
Port P
o MODCTIRQC
RESET

Figure 4-6 DSP96002 Architectural Block Diagram. Two symmetric bus
expansion ports with two channel DMA controller that blow
away the speed limit on external memory access and data I/O.
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4.5.2 DIT Butterfly Kernel on DSP96002

The butterfly equations implemented in the radix-2,
DIT FFT on DSP96002 are the following:

A=A+ B W, + B W,

A= A+ By W B, W, Eqn. 4-3
B’ = Ar - (Br Wy + Bj W)

B'i = A - (Bi Wr- By W)

where:  represents an imaginary component
; represents a real component
‘ symbolizes output items

The implementation of this basic butterfly in
DSP96002 assembly language code is shown in
Figure 4-7. The kernel in Egn. 4-3 executes in four
instruction cycles, or eight clock cycles. Since four
real multiplications are needed, and only one real
multiplier is available, this is the most efficient im-
plementation possible. In addition to the features
available on the DSP56001/2, this efficient execu-
tion is obtained by the FADDSUB instruction which
delivers the sum and the difference of two oper-
ands, in parallel with a multiplication and two data
moves. With this feature, a total of three floating-
point operations can be executed in one instruction
cycle, resulting in a peak performance of 60 million
floating-point operations per second (MFLOPS)
with a 40-MHz clock.

The triple-nested DO loop routine, which computes the
radix-2, DIT FFT on the DSP96002 takes only 30 words
in program memory. A 1024-point complex FFT is exe-
cuted in only 2.31 ms, assuming a 27-MHz clock.
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;r0
irl
iré
i r5

[ R |
0O w>

fnpy d8,d6,d fadd.s d3,d0

fnpy d8, d7,d3 faddsub. sd4, dO

fnpy d9, d6, d0 fsub. sd1, d2

fnpy d9, d7,d1 faddsub. sd5, d2

x:(r0),d4.s d2.s,y:(r5)+

x:(r1l)+,d6.s d5.s,y:(r4)+

do. s, x: (r4)

d4.s,x:(r5) vy:(rl),d7.s

y:(r0) + d5.s ;Br*cos O dO

;Br*sin O d2
;Bj*sin + Br*cos O dO
A0 d4, 0 O nmem

;Bj*sin O d3

A+ Brl O do
;A - Brl0 d4
; Br Od6

;G 0O nem

;Br*sin - B *cos O d2
;O 0 nem
A O ds

;Bj*cos O di
A+ B 1 0d2
A - B10Ods
;D Omem

;B 0O d7

Figure 4-7 The Radix-2, DIT FFT Butterfly Kernel on the DSP96002
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4.6 Implementation on
Motorola’s DSP56156

4.6.1 DSP56156 Architecture

The DSP56156 is the most recent addition to the Mo-
torola DSP line. This 16-bit fixed-point number DSP is
designed primarily for speech coding and telecom-
munication. The on-chip sigma-delta codec functions
as a bridge between the analog and digital world. The
on-chip phase-locked-loop (PLL) reduces clock noise
to a minimum. Operating at 60 MHz, the DSP56156
can execute 30 million instructions per second with
two kilowords (2k) on-chip data RAM (which is four
times larger than DSP56001’s) and four address reg-
isters. Since the DSP56156 is designed for the digital
cellular phone, its limited instruction operation codes
must focus on telecommunication capability, and
some of its advanced addressing modes and instruc-
tions that accelerates FFT calculation must be
compromised due to the smaller instruction words.

Although only one memory module can be accessed
in a single instruction cycle, the DSP56156 does sup-
port dual memory reads. However, it does not
support dual memory writes in a single instruction cy-
cle. Four address registers and a single write per
instruction may slow down FFT performance on
DSP56156, but having 2k on-chip data memory may
compensate for a portion of the performance loss, i.e.
dual on-chip memory reads may save time equivalent
to four instruction cycles if the number of data points
is between 256 and 1024 points.
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4.6.2 DIT Butterfly Kernel on DSP56156

The butterfly equation for the DSP56156 is the same
as the DIT butterfly equation for the DSP56001/2 as
shown in Eqgn. 4-2. However, two more instructions
are required in the DSP56156 butterfly than the
DSP56001/2 because of its lack of a dual-write op-
eration and its constraints on the address register
mode. Figure 4-9 shows the DSP56156 assembly
language code of the butterfly core.

npy x0,y0,b a,x:(r2)+ ; b=WBr,save prev. Bi',r2 -> Br

macr x1,yl,b x:(r0)+n0, a ; b=WBr +WBi , a=Ar

add a,b ; b=Ar +W Br +W Bi =Ar’

subl b, a b, x: (r0) + ;a=2Ar-Ar’ =Br’, save Ar’, r0O pt to A
npy -y1,x0,b a, x:(r2)+ s b=-WBr, save Br’, r2 pt to Bi
macr y0,x1,b  x:(r0)+n0,a x:(r3)+, x0 ;b=-WBr+WBi,a=Ai, x0=next Br

add a,b x: (r3)+ x1 ;b=Al -WBr+WBi =Ai ', x1=next Bi

subl b, a b, x: (r0) + ;a=2A-A'=Bi’, save Al’, r0-> next Ar

Figure 4-9 The butterfly core of the DSP56156. Notice that a single
write operation paralleling with an instruction always occu-
pies a whole data move field.

4.7 Scaling for Fixed-Point
Processors
(DSP56001/2 and DSP56156)

Whenever mathematical algorithms are implement-
ed in digital hardware, note that results are obtained
with finite precision. The precision is generally limit-
ed by the number of bits used in the number
representation, and depends on how the arithmetic
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limits its results to those bits. The user must use
care to prevent overflows in the FFT outputs of
fixed-point DSPs. Scaling via shifting or dividing
can keep input data or intermediate results within
the correct range, while maintaining maximum pre-
cision on the outputs.

4.7.1 Scaling at the Input — Guard Bits

Since data length grows with each pass, overflow
can occur at any pass if there is no scaling in the in-
put of a fixed point number DSP. The magnitude of
the output by the DIT butterfly defined in Egn. 4-2 will
grow an average of one bit on the output in each
pass. This is based on the observation that output A’
(a complex output) can be rewritten as A’ = A+ Bx W
where A’, A, B, and W are complex numbers. Since
W = e® it has a unit magnitude.

The complex operation B x W simply rotates B ac-
cording to 6 and causes no magnitude growth.
Complex addition is the only chance in a single but-
terfly calculation to make the output magnitude grow
larger than a value of one. One addition can cause
growth of one bit. Therefore, for N = 2™ points of the
FFT, m passes are required, i.e., m times a potential
worst case magnitude doubling. However, the twid-
dle factor will reach its maximum magnitude when
0 = /4. For this case, the maximum magnitude
growth is 2.4 bits on real and imaginary compo-
nents. Fortunately, only two groups of butterflies in
each pass will use the maximum twiddle factors. No
butterflies use the maximum twiddle factors twice

4-20
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within an entire FFT calculation. This mutually exclu-
sive characteristic is the base upon which block
floating point arithmetic is designed.

To prevent overflows in the FFT calculations, the in-
put data should keep m zeros in the significant part so
that growth bits will not get lost during the overflow.
The m zeros are called “guard bits”. To obtain suffi-
cient guard bits, divide the input data words by N. For
example, if the DSP56001 is implementing a 1024-
point complex FFT, 10 guard bits are inserted into
the most significant bits of the 24-bit data word, re-
sulting in 14 bits of actual information. But on the 16-
bit DSP56156, only 6 bits contain actual information
after 10 guard bits are inserted. This may make the
signal-to-noise ratio unacceptably low. This method
of scaling the input data is simple and effective on a
smaller FFT or on a large data word processor like
the DSP56001. For a larger FFT or a small data
word processor, an alternative method discussed in
the next subsection may result in improved signal-
to-noise ratio with some trade-offs.

4.7.2 Scaling During the Passes —
Auto-Scaling and
Block Floating-Point

Scaling in the input truncates valuable information
contained in data words by shifting input data right
by m-bits. 6.02 x m dB have already been lost before
the start of the FFT calculations. As indicated in the
last subsection, an average of one bit word growth
occurs in each pass. Another way to prevent over-
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flow in the FFT calculation is to scale down the
output of the butterfly by two at each pass, regard-
less of whether or not an overflow occurs. Since the
scaling down at the output is automatically carried
out to the next pass, the amount of scaling down is
known before hand. To obtain the true FFT output,
simply multiply each output by N. This method is
simple and has better signal-to-noise ratio than the
scaling in the input method. But some passes may
not have bit growth or overflows, so excessive scal-
ing may occur, and automatic scaling may cause
some information to be lost.

A more aggressive method treats one pass as one
block of data, and assigns an exponent for each
block. If bit growth occurs, the method scales down
the output by one bit and increases the exponent by
one. At the end of the FFT, the same number of scal-
ing up operations must be carried out. In the
DSP56156/DSP56002, the scaling bit (bit 7 in the
status register) eases implementation of this meth-
od. The scaling bit is referred to as a “sticky” bit
because once set, it retains its status until the next
read of the status register. Five more instructions are
added to the end of each pass to check the scaling
bit in the DSP56002 and DSP56156, and to update
the exponent of the complex FFT. (See program
FFTBF.asm on the Motorola DSP bulletin board; Dr.
BuB.) Among the methods discussed here, the sticky
bit method gives the best signal-to-noise ratio.

4-22
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4.8 Twiddle Factors and
On-Chip ROM

4.8.1 Twiddle Factors for
Decimation-in-Time

Twiddle factors, WKI = g2/ N, are coefficients

used in FFT calculations. For normal order input ra-

dix-2 decimation-in-time FFT, the twiddle factors

are always fetched in bit-reversed order, i.e.

(N/4)-1

W N

wa\ll\l/Z)—l N/4 N/8 .. (3N)/8 W

N’ Wy W W

Note that for an N point radix-2 FFT, two input data
words share one twiddle factor, and the bit-re-
versed order of the twiddle factor is based on N/2
points.

4.8.2 Sine Table on the DSP56001/2

When the data-ROM-enable (DE) bit in the OMR
register of the DSP56001/2 is set, the Y memory
from $100 to $1FF contains a 256-point full cycle
sine-wave, and each data entry has 24-bit accura-
cy. As mentioned in the last subsection, for an N
point FFT, N/2 complex coefficient twiddle factors
are required, and these N/2 twiddle factors are a
half cycle of the sine and cosine waveforms. Since
only a 256-point full cycle sine-wave is stored in the
DSP56001/2 data ROM, the maximum FFT length
utilizing only internal twiddle factors is one full cycle
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of the sine table, 256 points. However, a FFT larger
than 256 points can still be implemented utilizing the
on-chip sine table by calling this internal ROM dur-
ing the first several passes and the first several
groups in the last pass. Because DIT and normal in-
put order FFT require bit-reversed sine and cosine
tables, the DSP must be in the bit-reversed address-
ing mode when the on-chip sine table is invoked. A
common set up for addressing this table is:

ré6 = $100
n6é = $40
m6 =0

To address the cosine table in the FFT calculation, the
following relation between sine and cosine is utilized:

cos(X) = sin(x +T1V/'2) Eqn. 4-4
Another address pointer, for example, r2 is used to
point to the correct location.

r2 = $140
n2 = $40
mO =0

This set-up can be applied for all FFTs up to 256
points with length equaling a power of two, 2N,

4.8.3 Sine and Cosine Tables on the
DSP96002

The on-chip ROM of the DSP96002 features sine
and cosine tables. When the DE bit is set to 1, X
and Y memory from $400 to $7FF contain 512-point
cosine and sine tables respectively. Therefore, the
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maximum data length of the FFT without utilizing
external twiddle factors is 512 points. The address-
ing set-up is similar to that of the DSP56001:

ré = $400
n6é = $100
mé =0

Only one set of address registers is required on the
DSP96002 to access both sine and cosine values.

4.9 Bit-Reversed
Addressing

All Motorola DSPs feature a bit-reversed or inverse-
carry addressing mode to accelerate FFT calcula-
tions. When bit-reversed addressing is enabled, an
additional temporary data buffer is required to hold
normal order outputs since bit-reversing on the fly is
not an in-place method of FFT calculation. In some
situations, the memory space used is more critical
than the time used. To reduce the requirement for
space in the second buffer, an in-place bit-reversed
method is preferred. However, there is a time pen-
alty for space-saving since the in-place bit-reversal
must be carried out after the FFT is done. Program
BITREVTWD56.asm on the Motorola DSP bulletin
board (Dr. BuB) presents an example of in-place
bit-reverse for DSP56001/2. The algorithm that per-
forms conversion from bit-reversed order to normal
order addressing is presented in Figure 4-10.

MOTOROLA 4-25



nor nal _or der =out put _poi nter;
bitrev_order=data_buffer;
for (i=0;i<Ni++){
nor nal _order +;
bi trev_order+=N 2;
\* suppose bit reverse address avail abl e *\
if (normal _order< bitrev_order)
dat a[ nor mal _or der] =dat a[ bi t rev_or der]

}

Figure 4-10 In-place bit-reversed to normal order conversion

4.10 Implementation of a
Radix-4 DIT FFT
on DSP96002

In general, doubling the points in butterflies of FFT
reduces the number of groups in each pass and the
number of passes. A radix-4 butterfly accepts four
complex inputs, thus, the number of butterflies in a
pass is N/4, and the number of passes is log,(N).
However, the number of instructions required in the
radix-4 butterfly is three times that of the radix-2
butterfly. If the number of the instructions used in a
radix-4 butterfly is four or more times than that of
the radix-2’s on a processor, there is really no ad-
vantage to adapting the radix-4 FFT on such a
processor. Because the outputs or inputs of a radix-
4 FFT might be digit-reversed order which is not be-
ing supported by any DSPs in the market. A
software routine has to be used for converting digit-
reversed order data to the normal one.
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4.10.1 Radix-4 DIT Butterfly Core

The butterfly equations for a radix-4 DIT FFT can be
derived directly from two stages of radix-2 DIT but-
terflies, which are plotted in Figure 4-11. There are
four butterflies with four twiddle factors involved in
the calculation. In the first pass, pass x, two butter-
flies are in the same group (the twiddle factors for a
group are identical). In the second pass, pass x+1,
two adjacent butterflies share one twiddle factor but
differ by -j. (See SECTION 5.1 Optimization).

Pass x Pass X+1
Ao < . . » o A’
b
N X
Bo Q . ® o B’

coW . ,
b
o /\®W><

Figure 4-11 A flow diagram of two stages in a radix-2 DIT butterfly —four
complex multiplications are involved in the computation.

There are four complex multiplications required
which can be reduced to three by combining them
into a radix-4 butterfly. Eqgn. 4-5 shows two-stage
radix-2 butterfly calculations.
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A" = A+CW°+(BW® + DWWP)

B' = A+CW°—(BW® + DWW")

C' = A-CW°—j(BW —DW°WP) Eqn. 4-5
D' = A-CW° +j(BWP—DWWP)

Let WPWE = we, which gives us Eqgn. 4-6. A new
flow diagram for radix-4 DIT FFT results as shown
in Figure 4-12. Three twiddle factors are needed.
W, and W, originally come from the radix-2 DIT
FFT; W, is new for the radix-4 FFT. Note that the ra-
dix-4 DIT butterfly accesses 1/3 more twiddle
factors than the radix-2 does.

A" = A+CW®+(BW" + DWY)

B' = A+CW°—(BW"+DWY)
c' = A-CW°-j(BW -DW’) Ean. 4-6
D' = A-CW° +j(BW -DWY)

Since each butterfly takes four complex inputs and
generates four complex outputs, the number of
groups in a pass is reduced to N/4. Also, the num-
ber of passes is reduced to log,(N). Theoretically,
the lower boundary for radix-4 DIT FFT is:

TRIV xN/4 + (log,(N)—1) x N/4 x BFLY

Twelve multiplications, fourteen additions, and eight
subtractions are required for a radix-4 DIT butterfly,
as Egn. 4-7 illustrates.
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Ao oA
VA
Bo—@ o B’
Co—@wc ><>< o C’

VAN
D—X) o - D

Figure 4-12 A flow diagram of a Radix-4 DIT butterfly. 12 multiplications
and 22 additions or subtractions are required.

Atr = Ar+ CrWf-Ciwe¢
Ati = Ai+Crw¢+ Ciwf
Btr = Brwp + Drw¢d - Biwp - Diw¢d
Bti = Brw} + Drwd + BiwP + DW
Ctr = Ar—CrWg + Ciw¢
Cti = Ar—CiW¢—Crw¢

Dtr = BrwP-Drwd-BiwP + Diwd Ean. 4-7

Dti = BrwP-Drw¢ + BiwP-Diwd

Ar' = Atr + Btr
Ai' = Ati +Bti
Br' = Atr-Btr
Bi' = Ati—Bti
Cr' = Ctr+Diti
Ci' = Cti—Dtr
Dr' = Ctr-Dti
Di' = Cti + Dtr
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i r0->Ar4->B, r1->C r6->D
;r1->A, r3->B, r5->C, r7->D;
; N0=n4=4, n4=2;

; N2=n3=n5=n7=N 8.

nove x:(rd4)+n4,d3.s vy:,d5.s
nove x:(rd)+n4,dl.s vy:,d2.s
faddsub. s dl,d3 x:(r0),d7.s
faddsub. s d5,d2  x:(rl),d0.s dl.s,y: (r7)
faddsub. s d7,d0 d3.s,d4.s y:(rl)+nl,dl.s
faddsub.s  d7,d5 x:(r4),d6.s y:(r0)+n0,d3.s
faddsub. s do,d4 d7.s,x:(r3) y:(r4)+n4,d7.s
do #N 4, end r4
faddsub. s d3,dl  x:(r6)+,d9.sy:,d8.s
fnpy.s d6,d9, d5 d5. s, x:(r7)
f npy d7,d8,d3 faddsub.s dl1,d2 d4.s,x:(r5) d3.s,d4.s
f mpy d6,d8,d1l fadd.s d5,d3 dO.s,x:(r2)+n2 dl.s,y:
frpy.s d7,d9, d5 x:(r6)+,d9.s y:,d8.s
fsub.s di,d5 x:(r4)+n4,d6.s vy:,d7.s
fnpy.s d6,d9, dl y:(r7),d0.s
f mpy d7,d8,d2 faddsub.s d4,d0  d2.s,y:(r5)+n5
f mpy d6,d8,d0 fadd.s d2,dl  x:(rl1),d6.s dO.s,y:(r7)+n7
f mpy d7,d9,d2 faddsub.s di,d3 x:(r6)+d9.s y:,d8.s
f mpy d6,d9,d0 fsub.s do,d2  y:(rl)+nl,d7.s
f npy d7,d8,d3 faddsub.s d5,d2 d3.s,d4.s d4.s,y:(r3)+n3
f npy d7,d9,dl fadd.s d3,do0  x:(r0),d7.s dl.s,y:(r7)

f mpy d6, d8, d3 faddsub.s d7, do
faddsub.s  d7,d5
faddsub. s do,d4  d7.s,x:(r3) y:(rd),d7.s
fsub. s d3,d1  x:(r4)+n4, d6.sy: (r0)+n0, d3.s
_end_r4

faddsub.s  d3,d1 d5.s,x:(r7)
faddsub. s dl,d2 y:(r7),d6.s

nove do. s, x: (r2) dl.s,y:
faddsub.s  d3,d6 d4.s,x:(rb) d2.s,y:
nove d6.s,y: (r7)
nove d3.s,y: (r3)

Figure 4-13 Radix-4 DIT Butterfly takes 17 instructions on the
DSP96002
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For example, if there are 1024-point complex in-
puts, 8 x 256 + 4 x 256 x 14 =16,384 instructions
may be required to improve performance by 11% if
compared with 1024-point radix-2 DIT FFT. Here
assume, TRIV = 8 and BFLY = 14 since eight
ADD||SUB and six ADD instructions are theoretical-
ly required for such a butterfly calculation. One
important fact is that BFLY, (the number of instruc-
tion cycles for butterfly calculation) in a radix-4 DIT
FFT must be less than 16, otherwise, there is no ad-
vantage for using radix-4 over radix-2. Due to an
insufficient number of operations code, FMPY//
ADD//SUB instruction only works with destination
registers DO to D3 on the DSP96002.

4.10.2 Radix-4 DIF Butterfly Core

Using the same derivation, a radix-4 DIF butterfly
can be obtained. Although the number of multiplica-
tions and additions is the same as the radix-4 DIT
butterfly, the sequence of data appears differently.
Eqn. 4-9 shows an expanded form of the radix-4 DIF
butterfly. Eighteen instructions are used to code the
radix-4 DIF butterfly.
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Ar'" = Ar+Br+ (Dr+Cr)
Ai' = Ai+Bi+ (Di+Ci)
Cr' = [(Ar—Br)—(Dr-Cn)]W, +[(Ai~Bi) - (Di-Ci)W;

Ci' = [(Ai~Bi)— (Di~Ci)] W[ (Ar—Br) - (Dr —Cr)] W,

o
-1
1

[(Ar + Bi) — (Di + Cr)]WF +[(Ai—Br) + (Dr—Ci)]Wib
Bi' = [(Ai—Br)+ (Dr—Ci)]W?—[(Ar +Bi)—(Di + Cr)]Wib

Dr’

+[(Ai+Bi)—(Dr+Ci)]W?

Ci' = [(Ai+Br)—(Di+Cn]W —[(Ar—Bi)’f('Di—Ci)]WiO|

[(Ar—Bi)+(Di—Cr)]W(rj
d
r

Eqn. 4-8

4.11 Inverse FFT

The Inverse Fast Fourier Transform (IFFT) is de-
fined in Eqn. 4-9

N-1
x(n) = % Z X (k)el2mkn/N Eqn. 4-9
k=0

The differences between inverse FFTs and forward
FFTs are in the scaling factor, N, and the conjugat-
ed twiddle factors. A common method of
implementing the IFFT is to change the sign of the
sine table values and use the FFT subroutine to get
the IFFT. Alternatively, one can swap real and
imaginary parts, use swapped inputs to the regular
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FFT program, and then divide every real and imag-
inary output by N. Egn. 4-10 and Egn. 4-11 show
the equality. Eqn. 4-10 shows the inverse FFT.

(A +JA) (W, + W) = (AW, —AW)) + (AW, + AW))

Eqgn. 4-10

When swapping real and imaginary parts at the in-
put and using forward FFT twiddle factors, we have
the relation shown in Eqgn. 4-11.

(Ai + jAr)(Wr_jWi) = j(ArWr _AiWi) + (AiWr + Arvvi)

Egn. 4-11
Eqgn. 4-11 shows that the real part of the IFFT is in
the space used for imaginary memory in the for-
ward FFT and the imaginary part of the IFFT is in
the real part of the forward FFT. n
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SECTION 5

Optimizing
Performance of
the FFT

5.1 Optimization

“Optimization Judging the performance of any program requires
saves ...2067 the consideration of both its time and space complex-
instruction ity. There is always a trade off between these two
cycles which aspects. Time complexity indicates how fast an algo-
equals about  rithm can be implemented on a specified
10% cycle time  microprocessor, while space complexity tells how
of the optimized much memory may be required. Optimization can ei-
code’ ther reduce memory requirement or minimize run-
time of an algorithm. Since memory costs are contin-
ually decreasing, time optimization becomes more
and more important.

One way to evaluate the time complexity of an algo-
rithm is to compare its theoretical complexity, ideal
implementation complexity, and practical complexity.
Theoretical complexity refers to the number of addi-
tions and multiplications required by the given
algorithm, independent of the microprocessor’s archi-
tectures. This type of evaluating is only good for high-
level comparison among algorithms and does not re-
flect the real performance of the algorithm on a given
microprocessor. Not surprisingly, an algorithm that re-
tains a lower theoretical complexity has a higher ideal

MOTOROLA 5-1



implementation complexity. Ideal implementation
complexity considers only the implementation of the
core algorithm by the given microprocessor’s in-
struction capabilities, such as available instruction
type, addressing mode, parallel data move, etc.
Ideal implementation complexity indicates the non-
overhead performance of a given algorithm on a mi-
croprocessor, and always provides an optimistic
estimation of an algorithm’s performance. Practical
complexity denotes the ideal implementation com-
plexity plus the structure overhead of the
microprocessor. (Structure overhead includes all
required instructions not associated with the core
algorithm.) Moving pointers, setting up DO loops,
jumps to subroutines, and conditional jumps are
typical structure overhead in microprocessors.

By distinguishing the different complexities, one
can easily determine which microprocessor is com-
petent for each aspect, and which instruction or
address mode is critical to the specific algorithms.
Also, chip designers may derive clues from the
complexity analysis for determining which instruc-
tion or address mode should be added to the next
revision. For example, the DSP96002 supports
FMPY||ADD||SUB — an instruction with two parallel
moves. The theoretical complexity of a radix-2 but-
terfly is four real multiplications and six additions or
subtractions. Thus, the ideal implementation com-
plexity of a radix-2 FFT on the DSP96002 is four
instruction cycles. If each butterfly needs an aver-
age of 0.25 instructions to set up a pointer or DO
loop, etc., the practical complexity of radix-2 is 4.25
instructions. The ratio of ideal implementation com-
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plexity to practical complexity reflects the efficiency
of a microprocessor to perform a specific function.
For example, the efficiency of the DSP96002 per-
forming a radix-2 complex FFT could be:

ideal implementation complexity - _4

efficiency =
practical complexity 4.25

Eqgn. 5-1
In other words, the structure overhead for this par-
ticular example is about 6%. For FFTs implemented
on programmable DSPs, the structure overhead
should be between 3% and 15%. If a DSP has
structure overhead higher than 15%, it can not be
called a DSP. If one claims a structure overhead
lower than 3%, it is probably an application specific
integrated circuit (ASIC).

5.1.1 Minimum Memory Requirement —
In-Place Calculation

Although each radix-2 butterfly has two complex in-
put data and two complex output data, calculation
of the butterfly can be done by using only one mem-
ory set called in-place calculation. Memory
requirements may be minimized by:

* Reordering data into bit-reversed order.
This can be done in-place since data is
interchanged by pairs, as seen in Figure 4-9.
Thus, only 2N real data locations are
required.

MOTOROLA 5-3



W

N

¢ Reducing the size of the twiddle factor

table from N real locations to N/2 real
locations for normal order input DIT FFT
(see reference 8). Notice that in normal
order input DIT FFT the order that accesses
the twiddle factor table is bit-reversal, i.e.

(N/2)-1 VVN/4 WN/8 W(SN)/S . W(N/4)—1

UINCYN YN e N

N/2 complex numbers can be combined in
pai\rls/ of two, which differ by a factor
Wy =4 . 1In other words, the second
twiddle factor in the pair can be obtained by
multiplying -j with the first twiddle factor. In
fact, this optimization can be implemented
with a minor modification to the previous
butterfly core. All odd indexed groups will use
negated, real and imaginary exchanged
twiddle factors from the previous even
indexed groups. Therefore, the number of
groups in a pass is reduced to half of the
previous one and the access time of twiddle
factors is also reduced to half of the previous
one.

e Using a triple-nested DO-loop FFT to

minimize the program memory space (as
seen in Figure 4-5). Items 1 and 2 above
save data memory space for the FFT
calculation only.

5-4

MOTOROLA



5.1.2 Optimization for Faster

Execution
Although the previously discussed program exe-
cutes very efficiently, some applications may impose
less stringent requirements on program memory
size, but demand even faster execution. Faster exe-
cution can be obtained by further optimizing the
previous algorithm. The following pages present sev-
eral steps to achieve this optimization.
1. Since the first and second passes have trivial

twiddle factors:
0 _ N/4 _ .
WN = 1, and WN = -

it is common to combine the first and second
passes as one radix-4 pass by calculating N/4
butterflies in the following equations.

Ar' = Ar+ Cr + Br + Dr

Br' = Ar+ Cr—(Br+Dr)

Cr = Ar—Cr+ (Bi—Di)

Dr' = Ar—Cr—(Bi—Di) Eqn. 5-2

Bi' = Ai+Ci—(Bi+Di)

Ci" = Ai—Ci—(Br—Dnr)

Ai"’ = Ai+ Ci+Bi+Di

DI’ = Ai—Ci+ (Br—Dr)
Notice that there are eight additions and eight
subtractions in . A DSP that has a multiplication
and accumulation instruction with one or two
parallel moves (type A DSP) may take at least

sixteen instructions to do . A DSP that has a
FMPY||ADD||SUB instruction with two parallel
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data moves (type B DSP) can do in eight
instructions. After combining the first two trivial
passes as a radix-4 pass, the number of
instructions required in the radix-2 DIT complex
FFT becomes:

(TRIVXN/4)+[(m—2) X N/2 X BFLY]

where: TRIV is the number of instructions
necessary to perform a trivial butterfly

Theoretically, for the DSP56001/2, the
DSP96002, and the DSP56156, TRIV may be
16, 8, and 16 instruction cycles, respectively.
Therefore, a 1024-point complex FFT on the
DSP96002 can be done in (8 x 256) + (8 x 512
x 4) = 18,432 instruction cycles. This is a lower
boundary of the radix-2 complex FFT. In fact,
TRIV is 17, 8, and 22 on the DSP56001, the
DSP96002, and the DSP56156, respectively.
Cycle time of the FFT can be reduced further by
exploring the simple relations among the
remaining passes.

Trivial twiddle factors exist in the remaining
passes as well. Special butterflies can take
advantage of those simple relations. There are
two types of trivial twiddle factors:

Type | W% = 1,Wm/4 =
Typell wi'® = w8 - 0707 -j0.707

Type | trivial factors don’t involve multiplications
as already shown in Egn. 5-2. To utilize these
simple relations in the remaining passes,
different butterflies must be inserted in one
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pass. This change results in longer program
code and some structure overhead, such as
updating address registers, different DO loops,
and modulo addressing.

Type |l trivial factors are not really trivial for
either type A or type B DSPs. Type |l trivial
factors reduce the theoretical complexity of a
radix-2 butterfly to two real multiplications and
six real additions or subtractions. With only one
adder on type A DSPs, six instructions are
required as before. The ideal implementation
complexity could be 3 for type B DSPs, but
unfortunately each radix-2 butterfly deals with
four real inputs and four real outputs. Type B
DSPs have only two parallel data moves, and
each radix-2 butterfly still takes at least four
instruction cycles for type Il trivial factors. The
type |l trivial factor issue is addressed here
because this is probably the last chance for
further optimizing radix-2 FFTSs.

Each group in the last pass consisted of a
single butterfly. A triple nested DO loop is thus
no longer required in this pass: it can be split
and handled by a single DO loop.

3. Another alternative is to combine the last two
passes into one radix-4 pass. Since each
butterfly in the last pass requires a different
twiddle factor, one instruction to fetch a twiddle
factor must be appended in the butterfly core.
The same fetch occurred in the second to last
pass in every two butterflies. Combining four
radix-2 butterflies into one radix-4 butterfly may
save four multiplications but a special twiddle
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factor table has to be created for the radix-4
butterfly.

4. Forlonger FFTs (>256 points), internal memory
in the DSP56001/DSP56002 is not sufficient to
contain the complete data set. Consequently,
the butterflies execute more slowly when the
processor needs to fetch a data value in
external X and in external Y memory in the
same instruction cycle. This causes the
instruction cycle to be “stretched”, resulting in
slower execution time. Through intelligent
memory usage, however, this effect can be
minimized. In a further optimized routine (see
Appendix A), the first two passes are
combined into a single pass. Next, separate
256-point FFTs are computed, whereby the
data is moved into internal memory, and the
results are not moved to external memory until
the final pass. This process avoids the
stretching of the instruction cycle on the middle
passes, and makes optimal use of the available
internal memory.

With these optimizations, a significantly faster rou-
tine is obtained. For instance, a 1024-point
optimized complex FFT routine is available for
DSP96002 which executes in 0.94 ms at 40MHz
clock (see Fully Optimized Complex FFT in Appen-
dix A). A fully optimized complex FFT routine for
DSP56001/2 is also listed in Appendix A
(CFFT56.ASM). 0.704ms is needed to calculate a
512-point complex FFT at 40 MHz clock, which is
8.7% faster than an optimized complex FFT. For
more benchmarks see SECTION 8. Note, however,
that “straight-line” code always results in longer
programs.

5-8
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5.2 Example of Optimization

5.2.1 Fully Optimized Complex FFT
for the DSP56001/2

Program CFFT56.ASM in Appendix A is a good ex-
ample of optimizing complex FFTs on the
DSP56001/2 for fast execution time. Figure 5-1
shows passes, groups and butterflies for a 512-point
complex FFT. There is a total of 9 passes. The num-
ber of groups in each pass doubles from pass to
pass, while the number of butterflies in each group
halves from pass to pass. Each pass has the same
number of butterflies,.i.e. N/2=256 butterflies.

CFFT56.ASM takes advantage of the trivial twiddle
factors in all the passes. Note that pass 0 and 1 can
be done by simple radix-4 butterflies. A radix-4 but-
terfly has been coded by 17 instructions, which is
the best case on the DSP56001/2. The parallel data
move in this radix-4 butterfly has been deliberately
arranged to avoid a dual data move involving exter-
nal memory, although the first and next to last
instruction may result in cycle stretch in some cas-
es. Since half of the 512 data are in external
memory, one instruction cycle is stretched, and 18
instruction cycles are used for a 512-point complex
FFT. This equals 4.5 instruction cycles per radix-2
butterfly. The same radix-4 butterflies are also ap-
plied to passes 2, 3, 4, and 5. Note that in Figure 5-1,
the groups highlighted by cross lines are trivial butter-
flies too, and are not covered by the simple radix-4
butterflies. These data points are calculated by 5-in-
struction radix-2 butterflies. As shown in Figure 5-1,
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each pass has 256 radix-2 butterflies and the first
seven passes have 860 trivial butterflies. 772 of
these radix-2 butterflies require 4.5 instruction cycles
(simple radix-4 butterflies) while 88 of them require 5
instruction cycles. Therefore, the total cycle time for
trivial butterflies is 772 x 4.5 + 88 x 5 = 3,914 which
means a savings of 860 x 6 - 3914 = 1,246 cycles
when compared to a non-optimization case. For
program simplicity, the above calculation does not
utilize the trivial butterflies in passes 7 and 8.

CFFT56.ASM uses N/2 real twiddle factors. This
scheme reduces the data memory requirement and
also reduces the structure overhead on group DO
loops, because the group number in each pass
changes to half of the previous scheme.

CFFT56.ASM fully utilizes internal memory to avoid
cycle stretch when the DSP56001/2 accesses two
data. A 512-point complex FFT is divided into two
256-point parts. The first 256-point part remains in
internal memory until the last pass. The second
256-point data loads into internal memory after the
first pass and stays there until the last pass.

The last two passes are implemented by two sepa-
rate single loops to avoid the penalty of DO loop
set-up. Each group has four radix-2 butterflies in the
next-to-last pass, and two in the last pass. If group
DO loop is still used, then each butterfly may take
6.75 and 7.5 cycles in the next-to-last pass and the
last pass, respectively. The cycles saved from the
separated DO loops are 256 x 6.75 + 256 x 7.5 -
512 x 6 = 576.

5-10
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Pass0 1 2 3 4 5 6 7 8

] w=ao

I:I W =(0,)
calculated by R4 butterfly

I:I W =(0,))
calculated by R2 butterfly

Figure 5-1 Trivial twiddle factors in a 12-point complex radix-2 DIT
FFT. The butterflies in highlighted groups can be calculat-
ed without multiplications. A, B, C, and D are radix-4
butterfly pointers.
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5.2.2 Fully Optimized Complex FFT
for the DSP96002

APPENDIX A presents a fully optimized program
for 1024-point complex input FFT for the
DSP96002. Like the fully optimized program for the
DSP56001/2, this program takes advantage of triv-
ial twiddle factors in all of the passes as follows:

* Naturally, the first and second passes are
combined into a radix-4 pass with each
radix-4 butterfly requiring 8 instruction
cycles. This is equal to 2 instruction cycles
per radix-2 butterfly.

All trivial butterflies in the middle passes
are calculated by a separate routine.

» Each pass is written in a separate section
to reduce the DO loop overhead. To reduce
the program length, the special radix-4 and
normal radix-2 butterflies are programmed
in subroutines. Only two-nested DO loops
are used for each pass.

» The last two passes are also combined into
a radix-4 pass. After the combination, the
number of instruction cycles per radix-2
butterfly is decreased from 5 to 4.25
instruction  cycles. Because radix-4
butterflies are used in the last two passes,
an extra set of 256 complex twiddle factors
must be present in the external memory.
These twiddle factors are generated off-line
by MATHLAB software.
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The fully optimized 1024-point complex FFT uses
18891 instruction cycles; while the optimized 1024-
point complex FFT program (seen on the Motorola
DSP bulletin board; Dr. BuB) uses 20958 instruction
cycles. Optimization saves 20,958-18,891=2,067 in-
struction cycles which equals about 10% cycle time
of the optimized code. Also note that the fully opti-
mized code only works with fixed data length. |
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“Data
acquisition on
the DSP96002 is

SECTION 6

Real-Valued Input
FFT Algorithm

A real-valued input FFT is a special case of the com-
plex FFT where all imaginary components in the input
are zero. Under this condition, input sequence is real,

truly parallel and the time sequence has a symmetric Fourier trans-
with CPU  form in the frequency domain. Only half of the
instruction frequency sequence needs to be computed for real-
execution.” valued input FFTs or real FFTs. Recall the definition
s Of the DFT:
N-1 _
Xt = Y x(Ned@MO/N 251 N-1  Eqn61
r=0
If x(r) is real,
N-1 . N-1 _
XC(—k) = z X(r)eJ(ZT[I‘k)/N _ z X(r)e—J(ZT[I‘k)/N = X(K) Eqn. 6-2
r=0 r=0
and
N-1 _ N-1 .
XC(N—K) = z er)ed—j)(ZTﬂ’(N—k))/N _ z X(r)e—J(ank)/N = X(k)
r=0 r=0
Eqgn. 6-3
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6.1 Real-Valued Input FFT
Algorithm 1

6.1.1 Bergland Algorithm

This algorithm was developed by Glenn D. Bergland
in 1968 (see reference 15). To derive this algorithm,
we assume that readers are familiar with the Cooly-
Tukey radix-2 DIT complex FFT shown in Figure 3-8.

Bergland'’s algorithm is based on the observation of
the symmetry of the FFT to the real input,
Xn(k) = XyHN —k) . Calculating the second
half of the FFT is not necessary. By checking for re-
dundancy in the Cooly-Tukey radix-2 decimation in
time complex FFT when input is a real sequence,
one may discover that when the twiddle factors
equal W(N/4) = — , only a negation and a re-la-
beling need be performed. This so called re-
labeling simply exchanges real and imaginary data
indexed by address registers. All odd index outputs
in Figure 3-8 are the second half of the transform,
which can be obtained from the symmetry. Ber-
gland’s algorithm uses those memory locations for
storing imaginary values. A direct map from the
Cooly-Tukey algorithm to Bergland’s algorithm is di-
agrammatically shown in Figure 6-1. Note that all
inputs are real and all intermediate results are
stored in N and only N locations. The calculation
can be done in-place, however, the indices of each
butterfly outputs are not in bit-reversed order as in
the Cooly-Tukey algorithm. The following discus-
sion refers to this order as the Bergland order.
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A0(0) A1(0)
AO(1) AL(1)
AO(2) AL(2)
AO(3) AL(3)
AO(4) AL(4)
AO(5) %'1(5)
AO(6) A1(6)
AO(7) AL(7)
AO(8) A1(8)
AO(9) A1(9)
AO(10) A1(10)
AO(11) A1(11)
AO(12) A1(12)
AO(13) A1(13)
AO(14) A1(14)
AO(15) A1(15)

2(0)

A2(1)

2(2)

A2(3)

2(4)

A2(5)

2(6)

A2(7)

L pA2(8)

A2(9)

A2(10)

A2(11)

iA2(8)

no operation necessary

iA2(9)
iA2(10

——piA2(11

v

operation necess|ary

T
v

A3(0)

3(1)

3(2)

3(3)

A3(4)

A3(5)

iA3(4)

iA3(5)

A3(8)

3(9)

iA3(8)

iA3(9)

3(12)

3(13)

iN3(12

iA3(13

|

no op

4(0)
4(1)
—» A4(2)

__p iA4(2)

A4(4)

iA4(4)

A4(6)

IA4(6)

A4(8)

iA4(8)

4(14)

A4(14

A4(12)

AAL(12

AA4(10)

A4(10

X(0)

X(8)

Xr(4)

Xi(4)

Xr(2)

Xi(2)

Xr(6)

Xi(6)

Xr(1)

Xi(1)

Xr(7)

Xi(7)

Xr(3)

Xi(3)

Xr(5)

Xi(5)

FFT with

real inputs

Figure 6-1 Non-redundancy calculation of the Cooly-Tukey radix-2 DIT
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The twiddle factors appear to be in the Bergland or-
der also, as shown Figure 6-1, if more than 16 points
of real FFT are carried out. The next section explains
how to convert a normal order of twiddle factors to
the Bergland order and how to convert the Bergland
ordered outputs to normal order. The only operation
performed for multiplying by -j is a re-labeling of half
of the current outputs as imaginary inputs for the next
stage. Thus, in Figure 4-2 all butterflies, except one
with WP, have the crossed inputs to the butterfly,
even though the butterfly in each group is identical.
An additional benefit of ‘no operation’ is the reduc-
tion of the number of passes, log,(N)-1, except for
one addition and one subtraction. The final algo-
rithm is shown in Figure 6-2.

The Bergland butterfly differs from the Cooly-Tukey
butterfly simply in that the Bergland requires two more
conjugate operations, which are done by re-labeling
(see Figure 6-3). Essentially, the number of arithmetic
operations required by both algorithms is the same.
Although re-labeling can be implemented in parallel
with other arithmetic operations without consuming
instruction cycle time, it does require a data move.
This extra traffic may have an impact on the imple-
mentation later on. Figure 6-3 depicts the Bergland
butterfly. Butterfly (a) is a simplified version of (b)
since no complex multiplication is carried out when
w=1. Note that the inputs in (b) have been re-labeled
to reflect a multiplying -j operation. To calculate the
butterfly (a) two additions and two subtractions are
needed along with four real multiplications, three real
additions, and three real subtractions.

6-4

MOTOROLA



A0(0)

AO(L)

AO(2)

AO(3)

AO(4)

AO0(5)

A0(6)

AO(7)

AO(8)

A0(9)

AO(10)

AO(11)

A0(12)

AO(13)

A0(14)

AO(15)

AL(9)

A1(10)

AL(11)

AL(12)

A1(13)

Al(14)

A1(15)

BB

BB

2(0)

A2(1)

2(2)

A2(3)

2(4)

A2(5)

2(6)

A2(7)

A2(8)

©)

A2(10)

A2(11)

A2(12)

2(13)

A2(14

A2(15

/BB

A3(0)
3(1)
A3(2)
3@3)

A3(4)

BB

|_»-A3(5)

~A3(6)

BB

KBB

A3(7)

A3(8)

3(9)

3(10

A3(11

A3(12

A3(13

A3(14

A3(15

X(0)
XX(S)
Xr(4)
Xi(4)
Xr(2)
Xi(2)
Xr(6)
Xi(6)
Xr(1)
Xi(1)
Xr(7)
Xi(7)
Xr(3)
Xi(3)
X1(5)

Xi(5)

Figure 6-2 Bergland algorithm has only log,(N)-1 passes and one
more addition and subtraction
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X=A+|B X'=A+C+/(D+B)  X=A+C X'=A+BWr+DWi
+(C+DWr-BWi)

} \ W/ =% Y'=A-(BWr+DWi)
Y=C+D Y'=A-C+{(D-B)  Y=B+jD -[C+(DWr-BWi)]

* denotes conjugate

@) (b)

Figure 6-3 (a) Butterfly of Bergland Algorithm with W = 1
(b) Butterfly of Bergland Algorithm with W z 1

6.1.2 Reordering

The output order of the Bergland algorithm is slight-
ly different than the bit-reversed order, and the
twiddle factor required in the calculation is also in
Bergland order. To get this special order, one may
use the following algorithm for doubling the length

of each number sequence:

1. Multiply the second entry of the sequence by
two, and make this product the second entry of

the new sequence

2. Subtract each nonzero entry of the sequence
from twice the product formed in step 1 (these
differences form the rest of the even entries of

the new sequence)

3. Take the odd entries of the new sequence as

the numbers of the original sequence
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The algorithm in Figure 6-3 can be translated to the
following C language code:

voi d
bi | dber g( ber gt abl , buf _si ze)
short *bergtabl, buf _si ze;

{

ster int i,j,k;
buf _size / 4;
4;

egi

ber gt abl [ 0] /* seed values for start */
bergtabl [i]
ber gt abl [ 2*i ]

ber gt abl [ 3*i]

nnNo

whi | e(i >1)
{

i
k

il2; /* increments drop by half */
k*2; /* new sequence size doubl es*/

bergtabl[i] =k / 2;
for (j=i+; j<buf_size; j = j+i+)
bergtabl [j+i] = k - bergtabl[j];

}
}

Figure 6-4 C language code that generates Bergland order tables

Also note that the size of the twiddle factors re-
quired in Bergland FFT is N/4, while the size of the
output data is N/2. Two tables must be generated
before the FFT computation.

6.1.3 Performance Estimation

For N=2"M, it has been shown that the pass or
stage number in Bergland algorithm is log,(N)-
1=m-1. In each pass there is one (and only one)
type (a) butterfly group. The Bergland algorithm
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4xN/4+ Z [4+BB(2

takes four points in and four points out. The number
of butterflies in each pass is N/4. Each butterfly
uses four multiplications, three additions, and three
subtractions, except that the type (a) butterfly uses
only two additions or two subtractions. For N=2M,
Bergland algorithm may need

m-1

i-1 i+1

-1IN/(2° ) Eqn. 6-4

i=2

instruction cycles to perform a N-point real FFT,
where BB is the number of instructions for the Ber-
gland butterfly. Theoretically, for the DSP96002
and the DSP56001, BB should be 4 and 6, respec-
tively. If the normal order output is desired, then
converting Bergland order data to the normal order
data must be included in the performance estima-
tion. At least two more instructions have to be
added to the last pass for accessing the Bergland
order table. The performance of the Bergland algo-
rithm including unscrambling could be:

m-1

N + z [4+BB(2
i=2

o2ty (nv2) -1

Eqgn. 6-5

Eventually, the real performance of an FFT is de-
termined by the architecture of the DSP on which
the FFT runs. As described in SECTION 4.4, the
actual performance of the FFT is determined by
the number of data paths, the number of registers,
the instruction type, the cycle time of DO loop, and
the memory organization. In other words, a good
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or relatively low complexity algorithm may not gen-
erate good performance if the microprocessor’s
architecture does not provide hardware support for
that algorithm. Due to the memory structure and
instruction type, the number of instructions for a
Bergland butterfly, (BB), actually are 5 and 7 on
the DSP96002 and the DSP56001,respectively.
(See program RFFT96B.ASM and RFFT56B.ASM
in APPENDIX A.) Due to this compromise in the
implementation, the next algorithm may be prefer-
able because of the number of instructions.

6.2 Real-Valued Input FFT
Algorithm 2

The second algorithm treats an N real-valued input
array as an N/2 complex array, without extra zeros.
Then, an N/2 complex FFT is performed. The trick
is to separate the transformation of the complex se-
quence into two complex sequences, then to obtain
the transformation of the real-valued input array.

6.2.1 Separating Two Real FFT from
One Complex FFT

If a real-valued input array is z(n), its transform Z(k)
has an even real part and an odd imaginary part. If
z(n) is packed in such a way that all even index data
is in x(n) and all odd index data is in y(n), then,
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Z(k) = DFT[z(n)] = DFT[x(n) + jy(n)]
= (DFT[x(n)] +DFTLy(n)])
= (%, (k) +iX;(k) +I0Y, (k) * Y;()])

= (1%, (k) = Y;() T +i[X;() + Y, (k)])

Eqn. 6-6

Eqgn. 6-6 shows that the DFT of a complex time se-
guence z(n) can be represented by the DFTSs of two
real time sequences x(n) and y(n), because the
DFT is a linear transform.

Also the second half of z(n) can be represented by
the DFT of x(n) and y(n)

Z(N—=k) = [X (k) +Y;(k) ]H[X;(k)=Y (k)] Eqn. 6-7

The goal of the derivation is to find out how to con-
struct the DFT of two real time sequences from the
DFT of a complex sequence. By combining Eqn. 6-6
and Eqn. 6-7, it shows:

DFT[x(n)] = X, (k) +jX;(k)

= {[Z,() +Z,(N=K)] +i[Z;(k) -Z;(N—=K)]} /2

DFT[y(n)] = Y, (k) +jY;(k)

= {[Z,(N=K) + Z;(K)] +][Z,(N—K) =2, ()} /2

Eqgn. 6-8
where: k=0,1,...,N/2
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According to Eqn. 6-8, two DFTs of two real time se-
guences can be rebuilt from one complex DFT. This
split operation, which separates two DFTs from
one, paves the way for the calculation of N real in-
put DFTs done by an N/2 complex DFT.

6.2.2 Rebuilding the DFT of a Real
Sequence from Two DFTs

From the previous discussion, DFTs of two real se-
quences can be constructed from one complex
DFT. In this section, we investigate how to rebuild
the DFT of a real sequence from two DFTS. To un-
derstand this point, recall Egn. 3-1. It can be
rewritten as:

F(K) = X()+WKY()  k=0,1,..N-1

Eqgn. 6-9
where:
N/2-1
_ rk
X (k) = z x(2r)W o
r=0
N/2-1
MOENDY x(2r + HWRE
r=0

Note that X(k) is the DFT of the even index se-
quence and Y(k) is the DFT of the odd index
sequence. X(k) and Y(k) in Egn. 6-9 can be deter-
mined from Eqn. 6-8. Furthermore, F(k), the DFT of
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a real sequence with N points, can be found accord-
ing to Eqn. 6-9. Combining Eqgn. 6-8 and Eqn. 6-9,
we obtain the final equation Eqgn. 6-10.

g = [0 Z0V2-K] (20ZON/2- Wl Ean. 640

where: k =0,1,...(N/2)-1,
N = Number of real inputs

Notice that:

« Only 0 to N/2-1 points are saved by the
algorithm.

e The values F(0) and F(N/2) are real and
independent, to obtain entire spectrum, F(N/2)
in the imaginary part of F(0).

The twiddle factors in the DFT and split complex
multiplication have different resolutions. In the
DFT, the period of W is N/2; in the split complex
multiplication, the period of W is N, though the
same number of points (N/2) are needed in both
cases. This means the algorithm may use more
memory space for twiddle factors.

Eqgn. 6-10 can be decomposed further to a real mul-
tiplication format that can be implemented on
DSPs.
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H1, = (A, +B,)/2

H1, = (A,=B,;)/2
H2, = (A;+B;)/2

- Egn. 6-11
H2, = (B, —A,)/2 q

A, = H1 + (W H2 —WH2)

B, = H1,—(WH2 -W;H2)

A = H1j+ (WH2 -W H2)

B, = —(H1,) + (W;H2,~W H2,)
where: W, = cos((27k)/N)
W, = —sin((2mk)/N)
and
A, = realZ (k) k=0,...(N/4-1)
B, = realz(N —k) k=0,...(N/4-1)
A = imagZ (k) k=0,...(N/4-1)
B; = imagZ (N —k) k=0,...(N/4-1)

6.2.3 Performance Estimation

In the following paragraph, we will discuss the com-
putational complexity of Eqn. 6-10 and the
implementation constraints on the architecture of
Motorola’s DSP. For detailed implementation,
please refer to the programs RFFT96.ASM and
RFFT56.ASM in APPENDIX A.

MOTOROLA 6-13



Eight multiplications, five additions, and five sub-
tractions are needed to implement Eqgn. 6-10. The
minimum requirement for this calculation is eight in-
structions if one multiplier and the MPY||ADD||SUB
is available on the given DSP. Note that there are
four special multiplications, and the multiplicands
are 1/2 in the calculations of H1,, H1;H2,, and H2;.

On the DSP56001, the divide-by-2 operation can be
automatically implemented by a “scaling down”
mode when data moves from the ALU accumulator
(A or B) to the X or Y data bus occur. The cost of
implementing the division operation, of course, is
that one instruction has to be used to turn on the
scaling down bit in the Status Register. Apparently,
only four multiplications are needed on the
DSP56001. But one may find that when the scaling
down mode is on, all output data from the accumu-
lator (A or B) to X or Y memory is also divided by 2.
Thus, the scaling down mode has to be turned off
before data is output to the X or Y memory.

The scaling bit control instructions on the
DSP56001 do not allow parallel data moves or any
other operations. If the DSP is in the scaling mode,
a total of twelve instructions are needed: four MAC
instructions, two toggling scaling bit instructions,
and six more ADD or SUB instructions. In practice,
see program RFFT56.ASM in APPENDIX A, where
the scaling mode is never turned on because scal-
ing must be done if block floating point is not used.
Therefore, the output of the program RFFT56.ASM
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is twice as large as true values. Ten instruction cy-
cles is the minimum requirement. In practice, one
instruction in the loop for data saving is included.

On the DSP96002, since the FMPY||ADD||SUB in-
struction is available, eight instructions are enough
to perform a computation such as Eqgn. 6-10. In AP-
PENDIX A more details about implementation such
as memory map, program length, twiddle factors,
and data size are presented.

The overall performance of the algorithm is deter-
mined by the time required to calculate an N/2
complex FFT plus the time for separating
manipulations.

CFFT(N/2) +S xN/4

Eqgn. 6-12

where: S =11 for the DSP56001
S = 8 for the DSP96002

6.3 Real-Valued Input FFT
Algorithm 3

In most practical situations, the data to be ana-
lyzed by the FFT is real and is usually obtained
from a single analog-to-digital (A/D) converter.This
knowledge can be exploited in several ways to in-
crease the speed of the FFT calculation even
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further:

1. Since the input data is real, there is no need to
multiply, add, or subtract the imaginary parts.

2. Use can be made of symmetries within the FFT:

XN(k) - XNE(N —K) Eqgn. 6-13

When x(nT) is real, * denotes complex conjugate.

Clearly, not all of the frequency points need to be cal-
culated, as many of them can be obtained by taking
a simple complex conjugate of other, previously
computed points. Taking a complex conjugate can
be easily achieved by moving the same values to dif-
ferent memory locations, after taking the negative of
the value which goes to Y memory (imaginary part).
Figure 6-5 shows the procedure for a 16-point, real
FFT in greater detail. A real-input FFT routine is
available for the DSP56001/2, which executes in
1.01 ms using a 40-MHz clock. This also includes the
amount of time necessary to bring in 1024 sampled
data points from an external A/D converter. Because
of the fast interrupt capability of the DSP56001/2,
data sampling creates very little overhead. As a re-
sult, the maximum sampling rate at which a 1024-
point real FFT can be executed equals:

1024

Fsmax = 3
1.01x10

= 1.014(MHz)

Comparing this with the sampling rate of 3.3 kHz
mentioned in SECTION 3.1 Motivation, a more
than 300-fold improvement is obtained by carefully
optimizing the Fourier transform algorithm!
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W

real-input Computed Value
four-point Not Computed
butterfly ) Complex Conjugate

Figure 6-5 Computation of the Real-Input, DIT FFT
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6.4 The Goertzel Algorithm

Previous FFT algorithms compute all or half of the
frequency points in the range equaling half of the
sampling rate. For some applications, such as sin-
gle frequency detection, only one or several
frequency points are of interest. Using FFT to find
these frequencies is no longer cost effective in the
sense of computational complexity.

The Goertzel algorithm (see reference 3) can be im-
plemented by a second order IIR filter for each DFT
coefficient. The transfer function for the IIR filter is:

l—WKlZ_l
Hy(2) = 1 2
1-2cos(21k/N)Z ~+Z
Eqgn. 6-14
where: WKI = e_znkj/N

N = the length of input sequence, which
depends on the resolution of two
consecutive frequencies to be
detected

k =the index of DFT coefficient

Also note that only three real coefficients are re-
quired in the IR filter. Naturally, the IR filter
recursively works on input samples and output re-
sults, so no input data buffer is needed; and only
two memory locations are used for storing internal
states of the IIR filter. Figure 6-6 shows an imple-
mentation of the Goertzel algorithm by a second
order IIR filter. In contrast, an IIR filter calculates
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every output corresponding to every input. In the
Goertzel algorithm, only one DFT coefficient X(k) is
needed, and X(k) = y,(N). In other words, the com-
plex multiplication is carried out only once in an
entire DFT calculation. In frequency detection, only
the power of magnitude of the DFT coefficient is
needed. This observation may simplify the compu-
tation even more.

; Goertzel algorithmto cal cul ate energy of DFT coefficient

data equ $100

CCEF equ $123456

LOoP equ 256
org p: $40
nove #data, r0 ;r0 -> input data
clr a #0, b ;1 (n-1)=0, 1 (n-2)=0
nove #CCEF, y0 ; yO=cos(2pi k/ N)

do #LOCOP, _END_GCERT
neg b y:(r0)+,a a,x1 ;x1=I(n-1),b=-1(n-2),a=x[i]/2

macr yo0, x1,a x1,y1 ;a=x[i]/2 + 1 (n-1)*CCEF, y1=I (n-1)
addl b,a x1,b ;a=x[i] + 2*1(n-1)*CECF - 1(n-2), b=I(n-1)
_END_GCERT
npy -yo0,x1,a a,x0 ;a=-con(2pi k/ NI (n), x0=I (n)
npy x1,y1, b ; b=l (n-1)72
mac x0,x0,b a,y0 ; b=l (n) "2+ (n-1) "2
npy x1,y0,a ;a= -con(2pi k/ N1 (n)l(n-1)
addl b, a ;a= power of nagnitude of DFT

Figure 6-6 DSP56001 assembly code that calculates energy of DFT
coefficients by single parameter

From Figure 6-6, the last output of the IIR filter is:

Vi (N) = 1(N) ~WR I(N-1) Eqn. 6-15
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The power of magnitude of the DFT coefficient is
easy to show:

y (N)2 = I2(N)—Zcos(2rtk/N)I(N)I(N—1)+|2(N—1)
)

Eqgn. 6-16

Hence, only one real coefficient is required to com-
pute the energy of the signal. Figure 6-6 shows the
DSP56001 assembly language code used to detect
the energy of a frequency specified by the Goertzel
algorithm. The recursive part of the IIR filter is effec-
tively implemented by three instructions. The total
instruction cycles for a N-point input sequence is
3N+8. Only one coefficient cos(2pk/N) is stored in
the on-chip memory and two more memory loca-
tions are used to store internal states I(N) and I(N-1).

6.5 Real-Time Data
Acquisition on
Motorola DSPs

A very important feature of a DSP is its capability to
carry data in and out in a deterministic amount of
time without interfering with the CPU core opera-
tions. “Real-time FFT” refers to the sampled data
from an A/D converter or other devices that is
stored in a buffer. Once this buffer is full, the DSP
starts the FFT program execution. In the mean
time, the DSP grabs the sampled data and puts it
into another buffer. Whichever finishes first, (the
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FFT program execution or data acquisition), has to
wait for the other one to finish its task. Thus, two
data buffers, plus synchronization between the pro-
gram execution and data acquisition is required to
implement the real-time FFT. This is also called
double buffering. The following sections present the
/0 peripherals on the DSP56001/2 and the
DSP96002, and show examples of how to set up
these peripherals for real-time data acquisition.

6.5.1 Fast Interrupt on DSP56001 for
Real-Time FFT Data Acquisition

Figure 6-7 shows a scheme for double buffering.
Two memory spaces are exclusively assigned to an
FFT program. The FFT program will not start until
one of two buffers is full. The loaded buffer will not
be loaded with data again unless the FFT has fin-
ished its execution on the buffer.

P = program X =real data Y =imaginary data

Fast interrupt

Buffer 1

FFT program

Buffer 2

Figure 6-7 Double buffering input data so that
data input can work with the FFT
program concurrently
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The double buffering is implemented by the fast in-
terrupt on the DSP56001/2 (see reference 1). The
data received by peripherals such as the SSI or
Host Interface (HI) on the DSP56001/2 will be
moved into the internal memory by the fast inter-
rupt. The fast interrupt needs only two instruction
cycles to move one received data word from a pe-
ripheral to a specified memory location without
changing the program flow in the CPU.

X-mem

SSi
Fast
or <& hterrupt [€ P CPU = FFT

T

Timer

Y-mem

Figure 6-8 Block diagram of the double buffering technique. SSI/HI
fast interrupt has higher priority than the MAIN or FFT pro-
gram. The pointer of buffer is checked by SCI timer
interrupt which has highest interrupt priority. The interval of
the timer interrupt is set according to data length so that the
buffer pointer can be updated accordingly.
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The data generation rate is actually much slower than
the FFT speed. For example, to generate a set of
1024-point data at 44.1 kHz sampling rate could take
1/44100 x 1024 = 23.2(ms) while a 1024-point real
FFT only takes about 1ms at 40 MHz clock on the
DSP56001/2. For this reason, the SSI or HI interrupt
as shown in Figure 6-8 has been assigned higher pri-
ority than the FFT program so that every piece of data
received can be sent to internal memory via fast inter-
rupt on the DSP56001/2. The buffer pointer keeps
growing by SSI/HI data moves and is being checked
by the SCI timer interrupt. Once the buffer is full, the
FFT program starts and proceeds to move the buffer
pointer to the next buffer so that SSI/HI fast interrupt
works with the CPU concurrently.

6.5.2 Real-Time Data Acquisition
on DSP96002

The same double buffering technique used on the
DSP56001 for real-time data acquisition is also ap-
plicable on the DSP96002. Data acquisition on the
DSP96002 is truly parallel with CPU instruction ex-
ecution. Recall the DSP96002 architectural block
diagram in Figure 4-4. The double buffering tech-
nigue guarantees that the two DMA channels
directly connected to the internal memory support
parallel data access without stretching an instruc-
tion cycle if the CPU core and the DMA controller
access different internal memory locations. |
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“To implement
Eqgn. 7-1, atwo
dimensional
time sequence is
decomposed
according to its
row or column.”

SECTION 7

Two Dimensional
Fourier and
Cosine Transforms

Two dimensional Fourier transforms are widely used
in image processing, image analysis, and video com-
pression. Because the fast discrete cosine transform
features high energy compaction and low implement-
ing complexity, it is becoming more and more
important in image and video compression.

7.1 Two Dimensional FFTs
on the DSP96002

Two dimensional FFTs are simply an extension of one
dimensional FFTs, and is shown by:

N-1N-1
F(i, k) = Z Z x(m, n)e(H(@mmi)/Ng(-j(2mk))/N
m=0n=0 Eqn. 7-1
where: 1=0,1,...N-1
k=0,1,..N-1
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To implement Eqn. 7-1, a two dimensional time se-
guence is decomposed according to its row or
column. Eqn. 7-1 can be rewritten in Eqn. 7-2.

N-1N-1
F(i, k) = Z DZ x(m, n)e(—j(ZTfmi))/l\@e(—J(Zﬂnk))/N

m=0m=0
Eqgn. 7-2

The one dimensional FFT code discussed in SEC-
TION 4 can be used in this extension. The code
included on the Motorola DSP bulletin board
(2DFFT.asm) implements the two-dimensional DIT
FFT by calling subroutine CFFT96.asm N times, if
an N by N 2D FFT is to be performed. Also, the
code demonstrates the implementation of a double
buffer by the DMA controllers on the DSP96002 as
discussed in SECTION 5.

7.2 Discrete Cosine
Transform on the
DSP96002

7.2.1 One Dimensional Discrete
Cosine Transform (DCT)

The one dimensional cosine transform of a discrete
time sequence x(n), n =0,1,...,N-1 is defined as:
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F(k) = Zc(k) z x(n )cos[(2n +N1k")} k=01,..,N—1

Egn. 7-3
where:
c(k)=—, k=0

|
=

k =1,2,..,N—1
elsewhere

Il
o

and the inverse transform is:

N-1

() =y c(k)F(k)COS[W} h = 0,1,

n=0

Eqgn. 7-4

A fast discrete cosine transform (FDCT) proposed
by Chen and Smith [see reference 1] is adapted in
this application note, and it's flow diagram is plot-
ted in Figure 7-1. Many optimized implementations
on the FDCT have been published. The code giv-
en on the Motorola DSP bulletin board is not fully
optimized; it simply demonstrates the simplicity of
the DSP96002 assembly code.
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Figure 7-1 The flow diagram of an 8-point discrete cosine transform.

Note that the output order of the transform is scrambled.

For N=2™, m > 2, this algorithm requires:
(3N/2) (log,N-1)+2 real additions and
NlogsN - (3N/2)+4 real multiplications.
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7.2.2 Two Dimensional DCT

A one dimensional DCT can be easily extended to
a two dimensional DCT as shown in .

N-1N-1
F(j, k) = 4—0(1'3(2:0() z z x(m, n)cos[—(zn -I;'\ll)kn)}
m=0n=0
vcos| 2T LT
Eqn. 7-5

Therefore, to calculate an N by N 2D DCT, repeat
the N-point 1D DCT N times. An 8x8 2D DCT as-
sembly code for the DSP96002 (DCT.asm) is
presented on the Motorola DSP bulletin board . =
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“The total
Icycles of the
DSP56156 can
be reduced to
about 44000
Icycles and the
twiddle factors
can be cut to N/2
with further
optimization.”

SECTION 8

Competitive Analysis
of FFT Performances

8.1 Most Popular Digital
Signal Processors

Currently a variety of DSPs are available from a
dozen of semiconductor vendors. This section ad-
dresses floating-point DSPs first, because the FFT is
one of their most important benchmarks. The archi-
tecture of floating-point DSPs is optimized for FFTSs.

Fixed-point DSPs are also discussed because they
have a higher performance-to-cost ratio than the
floating-point DSPs, and are used more frequently in
DSP applications such as digital audio, speech pro-
cessing, telecommunication, automobile control, and
home electronics. Since cost is a very sensitive issue
in fixed-point DSPs, some useful features such as
address mode, instruction type, number of input op-
erands in each operation, and 1/O capability can be
offset with a reduction in silicon area to keep the cost
as low as possible.

In general, the FFT performance on fixed-point DSPs
is less than floating-point DSPs if the comparison is
conducted on DSPs from the same vendor. But it is
not surprising that a fixed-point DSP from one manu-
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facturer may offer a higher performance than a
floating-point DSP from a different manufacturer.
After comparing existing DSPs, one may decide
which is an optimal architecture for FFTs regarding
speed and cost, where cost refers to required mem-
ory speed, memory size, and silicon area for special
hardware that aides FFT calculation. It is impracti-
cal to base the decision on selling prices because
they can be strongly influenced by sales strategies
of different DSP vendors.

The following sections compare DSPs from Motoro-
la, Texas Instruments, AT&T, and Analog Devices.
There are other DSPs from new players that may
have their merits, but they are not included in the fol-
lowing discussion due to their short time on the
market.

8.2 Performance of FFTs on
Digital Signal Processors

Digital signal processors can be divided into two cat-
egories; floating-point DSPs and fixed-point DSPs.
As is well known, the fixed-point DSPs suffer satura-
tion problems in calculations. To solve this problem,
the programmer must scale down input data either at
the front or in the middle of the calculation, which re-
sults in a shrunken signal-to-noise ratio or dynamic
range. The floating-point DSPs use an extra data
section to hold exponent information, consequently,
the dynamic range is so large that the chance of

8-2 MOTOROLA



overflow is non-existent in most circumstances. Of
course, one has to pay for this convenience by re-
quiring wider data memory, a larger silicon area,
and more power consumption.

8.2.1 FFTs on Floating-Point DSPs

Steps to implement various floating-point DSPs
may differ depending on their conformance with the
IEEE 754-1985 standard. In general, an IEEE float-
ing-point DSP requires more computational steps
to generate a normalized result than a proprietary
implementation does. Although, the IEEE imple-
mentation may result in a bigger die design in
achieving the same clock rate, it does, however,
provide a standard interface to other microproces-
sors. In contrast, when proprietary formatted DSPs
interface to other general purpose microproces-
sors, they require extra time to convert to the IEEE
format. Motorola and Analog Devices are commit-
ted to the IEEE floating-point format. Tl and AT&T
use their own proprietary format.

Table 8-1 offers a fair comparison of complex
FFTs on the different floating-point DSPs. Note
that there are no constraints on the FFT algorithm.
The FFT can be a Decimation in Time (DIT) or
Decimation in Frequency (DIF), and can also be a
radix two or radix four butterfly, as long as the al-
gorithm can generate the best performance on a
specified processor.
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8.2.1.1 Complex FFT on Floating-Point DSPs

Table 8-1 1024-Point Complex FFT on Floating-Point DSPs
DSPs 960021 | AD21020% | TIC403 Tic3o! | AT&T32C!
Icycle (ns) 50 50 50 60 80
Algorithm DIT DIT DIT DIT DIT
Radix 2 4 2 2 2
P Mem- 219 192 215 231 158
ory (word)
Data 4N 4N 4N 4N 2N
Memory
(word)
SIN/COS. 3N/2 3N/2 N/2 N/2 N/2
table
Instruction 32 48 32 32 32
length (bit)
SRAM for 20 35 25 35 20
Zero Wait
1. R.Meyer and K. Schwartz “FFT implementation on
DSP-Chips-Theory and Practice” ICASSP, 1990.
2. Analog Devices, ADSP-21020 User’'s Manual.
3. Texas Instruments, TMS320C4x User’s Guide.
NOTE: Icycle in Table 8-1 refers to instruction cycle.

Minimum Icycle denotes the reciprocosity of the
highest clock frequency available on the DSPs.
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Table 8-1 shows that the Motorola DSP96002 per-
forms the fastest 1024-point complex FFT. The
Analog Devices’ ADSP21020 performs almost as well
as the DSP96002. The main factor that makes these
two DSPs so fast in calculating the FFT is the special
instruction “MPY||ADD||SUB". Supported by this in-
struction, the DSP96002 needs only four instruction
cycles to perform one radix 2 butterfly, and the
DSP21020 needs only fourteen instruction cycles to
do one radix 4 butterfly. However, the DSP96002 has
2x512 data words on the chip and it features two on-
chip DMA controllers. The on-chip memory and DMA
controllers are extremely important features in imple-
menting real-time data acquisition and control. The
lack of peripherals and memory on the DSP21020
forces it into the position of competing with RISC
chips. Although the DSP21020 requires lower cost
SRAM for zero wait states interface, the program
memory has to be 48-bits wide which negates the sys-
tem cost benefits of using slow memory.

8.2.1.2 Real FFT on Floating-Point DSPs

Table 8-2 1024-Point Real Input FFT on Floating-Point DSPs I

DSPs 960021 | TIC40? | TIC30° | AT&T32C*
Icycle (ns) 50 50 60 80
Total Icycles 11600 20396 31317 26300
Total Time 0.58 1.01984 1.879 2.106
(ms)
1. See RFFT96T.asm on the Motorola 3. Texas Instruments, Digital Signal Pro-
DSP Bulletin Board (Dr. BuB). cess_ing Applications with the TMS320
2. Texas Instruments, TMSC4x User’s Family.
Guide 4. AT&T DSP32C User's Manual.
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8.2.2 FFT on Fixed-Point DSPs

As mentioned previously, scaling must be per-
formed on the fixed-point DSPs to prevent overflow
in the intermediate stage of calculation. The follow-
ing benchmarks, either complex or real FFT,
assume that each input data has been divided by
the number of the FFT.

8.2.2.1 Complex Input FFT

Table 8-3 1024-Point Complex FFT on Fixed-Point DSPs I

DSPs 56001/21 | AD2100A% | TIC25° | TIC50% | 561564
Icycle (ns) 60/50 80 80 35 33
Algorithm DIT DIT DIT DIT DIT
Radix 2 4 2 2 2
P Memory 234 222 158
(word)
Data Mem- 4N 4N 2N 2N 4N
ory (word)
SIN/COS N/2 3N/2 5N/4 5N/4 N
table
Instruction 24 24 16 16 16
length (bit)
Total Icycles 29949 34625 113487 82761 46373
Total Time 1.79694/ 2.77 9.079 2.8967 1.53031
(ms) 1.49745

1. See CFFT56.asm on the Motorola DSP Bulletin Board (Dr. BuB).

2. R.Meyer and K. Schwartz “FFT Implementation on DSP Chips — Theory and Prac-
tice” ICASSP, 1990.

3. Texas Instruments TMS320 DSP Family Benchmarks.

4. See CFFT156.asm on the Motorola DSP Bulletin Board (Dr. BuB).
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As shown in Table 8-3, the Motorola DSP56001/2
has a minimum icycle time and uses only N/2 loca-
tions for both real and imaginary twiddle factors.
The total Icycles of the DSP56156 can be reduced
to about 44000 Icycles and the twiddle factors can
be cut to N/2 with further optimization.

8.2.2.2 Real Input FFT

Table 8-4 1024-Point Real Input FFT on
Fixed-Point DSPs
e
DSPs 560021 TIC252 TIC502

Icycle (ns) 50 80 35
Total 17443 56286 48055
Icycles

Total 0.87215 4.50288 1.6819
Time (ms)

1. See RFFT56T.asm on the Motorola DSP Bulletin
Board (Dr. BuB).

2. Texas Instruments TMS320 DSP Family Bench-

marks.
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“Motorola's
family of digital
signal
processors,
combined with
Motorola's data
conversion
parts, provide a
complete, cost-
efficient solution
to frequency
domain
problems ..

SECTION 9

Conclusion

Frequency domain applications are becoming more
important as inexpensive hardware solutions become
more readily available. Motorola's Family of
DSP56001/2 and DSP96002 digital signal processors
provide particularly effective solutions to frequency do-
main problems. A highly parallel architecture,
combined with an instruction set well suited for imple-
mentation of fast Fourier transforms, allow real-time
computation of high-resolution FFTs up to very high
sampling rates. Fast interrupts of the DSP56001/2 and
the parallel DMA over a separate bus in the DSP96002
provide for data I/O with hardly any penalty in speed.
Furthermore, the dual external buses on the
DSP96002 allow fast calculation of FFTs of virtually
unlimited size, with no performance penalty on external
data access.

The large, 24-bit data representation of DSP56001/2,
together with infinite-precision internal arithmetic and
convergent rounding, lead to numerically superior re-
sults over 16-bit DSPs with truncation arithmetic.
Special hardware provided in the DSP56001/2 allows
no-overhead automatic scaling and block floating-point
implementations of FFTs of virtually unlimited size,
with result precision rivaling that of true floating point,
for a fixed-point price.
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For high-end applications, the DSP96002 provides
full IEEE standard floating-point arithmetic for negli-
gible roundoff errors. In addition to providing
standard IEEE exception handling capabilities, the
results obtained in the DSP96002 are portable
across many applications that use the standard,
such as high-level language simulations, data buses,
etc. Motorola's family of digital signal processors,
combined with Motorola's data conversion parts (see
Reference 12), provide a complete, cost-efficient so-
lution to frequency domain problems; from low-end
small-size FFT applications, to high-end instrumen-
tation and computer workstations for scientific
computing. ]
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APPENDIX A

Fully Optimized

Complex FFT

points
passes
data
odat a
tab4

r4 tabl
org
nove

nove
nove

. VWRITTEN BY :

RVAXS. ASM : START PROGRAM FCR THE FFT MACRO RVAX. ASM
TH S FI LE SHOAS HON TO CONFI GURE MOTCROLAS DSP96002
; TO USE THE FAST COWPLEX FFT.
; TWDDLE FACTCRS | N RATABL. ASM

KARL SCHWARZ, RAI MND MEYER 10.11.89

; LEHRSTUHL FUER NACHR CHTENTECHN K
; UN VERSI TAET ERLANGEN- NUERNBERG

A.1 Optimized Complex FFT for the
DSP96002

B R s R R

*

* ok K % Ok X ok X

*

’
B R R

incl ude ‘r4tabl’
i ncl ude’ r max’

equ 1024 ; FFT-length, only 1024 possi bl e
equ 10 ; Id(points)
equ $800 input data, normal order
equ $Q00 out put data, nornal order
equ $1000 start of radix-4 twiddl e factors
; 766 conpl ex val ues)
tab4
p: $100
#$008A0000, x: $SFFFFFFFD ; zero wait states in BORB

#$008A0000, x: $FFFFFFFE

zero wait states in BCRA

#$0000FFFF, x: $FFFFFFFC ; Xport A Yand Pport Bin PSR

; Upper three noves won't count for the benchnark,
;only for initializing the similator or the DSP.
; They show how to configure the device.
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ok kkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk k%

R T

ATTENTI ON PLEASE!!IIN

STEP THROUGH THE FI RST THREE LINES, THEN LOAD THE SI MLATCR NEW
W TH RVAXS AND | NPUT VECTCRS, THEN GET A NEWRWN

rmaxpoi nt s, passes, dat a, odat a, t ab4

nop
nop
nop

end

COWLEX, RADIX-2,4 DT FFT : RVAX ASM

MACRO FCR A FAST LOCPED GCDE M XED-RADI X DI T FFT COMPUTATI ON

I N DSP96002

WR TTEN BY: KARL SCHWARZ, RAI MNND MEYER 10.11. 89

LEHRSTUHL FUER NACHR CHTENTECHN K
UN VERSI TAET ERLANGEN- NUERNBERG

REVISION : TH S PROGRAM | S SPEEDED UP FROM RM X1. ASM

PLEASE LOXK I N THE START FI LE RVAXS. ASM HOW TO CONFI GURE THE DEVI CE

FCR TH S PROGRAM THE FFTLENGTH |'S 1024 PQA NTS

SPEQ AL FEATURES : RADI X-4 BUTTERFLY I N FI RST AND LAST TWD STAGES
SI MPLE RADI X-4 BUTTERFLY IN 1. TO 6. STAGE | F NO TWDDLES ARE USED
TABLE IN USE : ONLY RATABL. ASM FCR RADI X-2 AND LAST RADI X-4 BUTTERFLY

LOX IN RATABL. M HONTO BU LT A TABLE

EXAVWPLE FCR THE 1024 PQ NT COWPLEX FFT (WTH Bl TREVERSAL)

MEMRY SIZE : PROGRAM : 219 WRDS

DATA : 4096 WORDS
TWDDLE FACTCRS : 1532 WRDS

CYCLES PER BUTTERFLY :

1. AND 2. STACE 2
3. A\D 4. STAGE 3.5
5. AND 6. STAGE 3. 875
7. STAGE : 4
8. STAGE 4.25
9. AND 10. STAGE : 4.25
AVERAGE CYCLES/ BUTTERFLY: 3.55
TOTAL BUTTERFLYCYCLES : 18176
I'NITI ALI ZATI ON OVERHEAD: 715 = 3.8 % CF TOTAL TI ME
TOTAL NUMBER CF | NSTRUCTICN CYCLES : 18891
TOTAL TIME FCR A 1024 PA NT FFT: 1.399 nsAT 27 Mt

*

ok b K R K R K ok K ok ok Gk % ok ok R ok R oy R % % ok % % F ok F ok F ok ok ko4 Ok % % F % %
*
*
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B R PR

*

USED RADI X-2 BUTTERFLY

+
AR+ j Al e o T (o AR +j A’
\ I +
\ /
\ /
I\
/ \
/ \ o+
BR+j Bl ---- ( Q8- j SIN) --O---nnmeamnnn O--nmmn-- BR +j B’
TR=BR* G58 + B * SIN
T =BR* SIN- Bl * QB
AR = AR + TR
A=A - Tl
BR=AR- TR
BlI'=A + Tl

B R R R )

USED RADI X-4 BUTTERFLY

AR+ A cmemmmnen o P o PP O----0-- AR +| A’
\ / \
v /A
BR+ ] Bl ---(W)---O-mmnXemnn- o P O----0O-- BR +] B’
VLo -
/AR
R+j O == (W)---O----Xemmnn o P 0----0-- R +j Q'
I\ - \
/ \ I\
DR+ D ---(VB)---Ommmmmmn- O--(-j)---0----C-- DR +j D’

ko kK ok ok kK & Rk & R % ok R F 4 b E F b bk b % o % K % R % % o F

M XING GF RADI X-2 AND RADI X-4 BUTTERFLIES | S PCSSI BLE W THOUT TROUBLE !

B R T TR
’

---> about 10 %faster than | CASSP 89 Paper 40.D9.7 by Kl oker and Li ndsl ey

r maxnacr opoi nt s, passes, dat a, odat a, t ab4

points : FFT-length (power of 2)

passes : |og2(points)

dat a : start address of input vector

odat a : start address of output vector due to bitreversal

t ab4 : start address of radix-4 twiddle factors fromfile r4tab.asm
pand equ passes-5

pg2 equ poi nts/ 2
pg4 equ poi nts/ 4
pg8 equ poi nts/ 8

Figure A-1 Optimized Complex FFT for the DSP96002(sheet 3 of 20)
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pg 16 equ poi nts/ 16
pg 32 equ poi nts/ 32
pg 64 equ poi nt s/ 64
pg 128 equ poi nt s/ 128
pg 4ni equ points/4-1
pg 16ni equ poi nts/ 16- 1
pg 64ni equ poi nts/ 64-1

cokkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk ok

e FIRST 2 STAGES AS RADI X-4 BUTTERFLY - ---vnmmmmmmmaeemoaeee *

B
,

nove #-1,n0
nmove noO, nl
nmove noD, n2
nove nD,nB
nove noO,
move no, nb
move noD, nb
nmove no, nv¥

nove #data, rO
nove #(data+pg4),rl
nove #(datat+2*pg4),r2
nove #(data+3*pg4),r3
move  #2,n0
nmove no, n6
move n0O, n5
nove nO, n7
nmove  #pg4ni, nl

jsr _sr4

R L)
’

------------ PARTS CF 3. AND 4. STAGE AS SPEQI AL RADI X-4 BUTTERFLY ------ *

,
Cokkkkkkkkkkkk kA kkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkx
,

nove #data, rO
nove #(data+pgl6),ril
nove #(data+2*pgl6),r2
nove #(data+3*pgl6),r3
nove #pg 16nd, nl1

jsr _sr4

B T )
’

------------ PARTS CF 5. AND 6. STAGE AS SPECI AL RADI X-4 BUTTERFLY ------ *

’
ok kk kR Rk kkkk kA Ak kkkkkkkkkkkkhkk kA kkkkhhkhkkkkhkkhkkkkkkkhhkkkkkkkkkhkkkkkkkkkkkk
,

nove #data,rO
nove #(data+pg64),ril
nove #(data+2*pg64),r2
nove #(data+3*pg64),r3
nmove  #pg 64nd, nl

jsr _sr4
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Ckkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhhkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk k&

s REST CF 3. STAGE AS RADI X-2 BUTTERFLY ----=zzzcccccccaaass *

R R
’

nove #3,n6 ; step for twiddle addressing in r4tab
nove #(tab4+3),r6 ; address of sin cos table
nove #(datatpg4),r0 ; input vector
nove #(data+pg4+pg8),ril
nove #3,n7 ; still 3 r2 groups to calculate
nmove #(pg 8-3),r7 ; pg8 r2 butterflies in a group
nove #(pg 8+1),n0 ; step to next group
jsr _nr2

R R R

D REST OF 4. STAGE AS RADI X-2 BUTTERFLY = --=c-nsmmemmmmmnammns *

Ckkkkkk Ak kkkkkkkkkkkkhhkhkkkkkkkhhkhkkkkkkkkhhkkkkkkkhhhkkkkkkkkhkkkkkkkkkkkkkkkkk k%
’

nmove  #(tab4+6),r6 ; address of sin cos table
nove #(data+pg4),r0 ; input vector
nove #(dat a+pg4+pgl6), rl
nove #6,n7 ; still 6 r2 groups to calculate
nmove  #(pgl6-3),r7 ; pglé r2 butterflies in a group
nove  #(pgl6+l), n0O ; step to next group

jsr _nr2

B R R R R R

e REST CF 5. STAGE AS RADI X-2 BUTTERFLY ------nccmmmcmmmmun-- *

Pk kk kR ARk ok k Kk kR Ak k ok hk ok kA Rk kkhhkhk kA Ak hkk kA Ak kkhkhkkkkkkkkkhkhkkkkkhkkkkkkkkk kK %
,

nmove #(tab4+3),r6 ; address of sin cos table
nove #(datat+pgl6),r0 ; input vector
nove #(data+pgl6+pg32),rl
nove #15, n7 ; still 15 r2 groups to cal cul ate
nmove  #(pg32-3),r7 ; pg32 r2 butterflies in a group
nmove  #(pg32+1), n0 ; step to next group

jsr _nr2

R R T T TR

e REST CF 6. STACE AS RADI X-2 BUTTERFLY -------nccmmmmcmmmn- *

R g e a T T
’

nove #(tab4+6),r6 ; address of sin cos table
nove #(datat+pgl6),r0 ; i nput vector
nove #(data+pgl6+pg64),rl
nove #30, n7 ; still 30 r2 groups to calcul ate
nove #(pg64-3),r7 ; pg64 r2 butterflies in a group
nove  #(pg64+1), n0 ; step to next group

jsr _nr2

B R R T T TR

e 7. STAGE AS RADI X-2 BUTTERFLY - - -nmmmmmmmcmmmemooeee oo *

R R
,

nove #(tab4),r6 ; address of sin cos table
nove #(data),rO ;i nput vector

Figure A-1 Optimized Complex FFT for the DSP96002(sheet 5 of 20)
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nove #(dat a+pg128),r1

nove #64, n7 ; still 64 r2 groups to calculate

nove #(pgl28-3),r7 ; pgl28 r2 butterflies in a group

nove #(pgl28+1), n0 ; step to next group
jsr _nr2
ckkkkkkkhkhkhkkhkhk kA Ak hkhhhkhkhkhhhhkhkhkhhhhhkhhhkhkhkhkhhdhhhhhhkhhkhkdhhkhhhhhhhhhhhkhkhhkhhrrhhhhx
D e 8. STAGE AS RADI X-2 BUTTERFLY === --smmmmmmeamme e *
Tk k kA kA AR A A AR A A A Ak Ak hhkhhkhhhhkhhhhkhh ko ko hkhkhhhkhhk ok ok hkhkhhkhkhkhkhkhhkhkhkhkhhkhkhkhkhkhkhkxxkkkx

nove #5, n0

nove #(data+4),r1l

nove #tab4,r6

nove #data, r0

nove ri1,r5

mover 0,r4

nove no, n1

nove no, n4

nove no, n5

nove x:(r6),d9.s y:,d8.s

nove x:(rl)+,do.s y:,dl.s

nove x:(r0),d4.s y:(r6),d2.s

nove y:(rl),d7.s

faddsub. s d4, d0 x:(rl)+d6.s y: (r6)+n6,d3.s
do #pg8, _end3 ; | oop of groups

f npy do9, dé6, do fsub. s d1, d2 do. s, x: (r4) y:(r0)+,d5. s

f npy do, d7, d1 faddsub. s d5, d2 d4. s, x: (r5) y:(rl1),d7.s

f npy ds, d6, d2 fadd. s d3, do x:(r0),d4.s d2.s,y:(r5+

f npy ds, d7, d3 f addsub. s d4, dO x:(rl)+,d6.s d5.s,y:(rd)+

f npy do, d6, do fsub.s di1, d2 do. s, x: (r4) y:(r0)+, d5. s

f npy do9, d7, d1 f addsub. s d5, d2 d4. s, x: (r5) y:(rl),d7.s

f npy ds, d6, d2 fadd. s d3, do x:(r0),d4.s d2.s,y:(r5)+

f npy dsg, d7, d3 f addsub. s d4, dO x: (rl)+nl, d6.s d5.s,y: (r4)+

f npy do9, d6, do fsub. s di, d2 do. s, x: (r4) y:(r0)+,d5. s

f npy do9, d7, d1 f addsub. s d5, d2 d4. s, x: (r5) y:(rl),d7.s

f npy ds, dé, d2 fadd. s d3, do x:(r0),d4d.s d2.s,y:(r5)+

nove x: (r6)+n6, d9. s y:,d8.s

f npy dsg, d7, d3 f addsub. s d4, dO x:(rl)+,d6.s d5.s,y:(r4)+

f npy do9, dé, do fsub. s di, d2 do. s, x: (r4) y: (r0)+n0, d5. s

f npy do9, d7, d1 f addsub. s d5, d2 d4. s, x: (r5) y:(rl),d7.s

f npy ds, dé, d2 fadd. s d3, do x:(r0),dd.s d2.s,y:(r5)+n5

f npy ds, d7, d3 faddsub. s d4, dO x:(rl)+,d6.s d5.s,y:(r4)+n4
_end3
:****************************************************************************
e LAST TWD STAGES AS RADI X-4 BUTTERFLY --------nomommommmaoom- *
Tk k kA kA A Ak ARk Ak A A A Ak Ak hkhkhkhh kA hkhhhkhkhkhhhkhkhkhkhkhhhkhkhkhhkhkhkhkhhkhkhkhkhkhhhhkdkhhkhkhkhkhkhkhkxkhhhx

move #$0, n2

nove n2, n8
Figure A-1 Optimized Complex FFT for the DSP96002 (sheet 6 of 20)
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novem 2, nb

novem 2,nv

nove #data, r0

nove #(data+l),r4
nove #(data+2),r1l
nove #(tab4+1),r6
nove #2,n4

nove #4, n0

nove no, n1

nove #odat a, r5

nove #(odat a+pg2),r2
nove #(odat a+pg4),r7
nove #(odat a+pg4*3),r3
nove #pg8, n5

nove n5, n2

nove n5, n7

nove n5, n3

nove

nove

faddsub. s di,d3
faddsub.s d5, d2

faddsub. s d7,do

faddsub.s d7,d5
faddsub.s do, d4

do #pg4ni, _er4
faddsub.s d3,dl
fnpy.s dé, d9, d5
f npy d7, d8, d3
f npy deé, dg, d1
fnpy. s d7, d9, d5
fsub.s di, d5

_er4

x: (r4)+n4,d3.s y:,d5.s ;d3=Br, d5=Bi

x: (r4)+n4,dl. s y:,d2.s ;d1=Dr,d2=D

x:(r0),d7.s ; d3=Br +Dr, d1=Br- Dr, d7=Ar

x:(rl),doO.sdl. s, y:(r7) ; d5=Bi +di , d2=Bi - O , dO=Cr,
;tenp store Br-Dr

d3.s,d4. s y:(r1l)+nl,dl. s ; dO=Ar +Qr, d7=Ar -
; O, d4=Br +Dr, d1=Q
Xx:(r4),d6.s y:(r0)+n0,d3.s ;d7=Ar-QO - (bi +D)

d7.s,x:(r3) y:(r4)+n4,d7.s

X:(r6)+,d9.sy:,d8.s

d5.s,x:(r7)
faddsub. s di, d2d4. s, x:(r5)d3.s,d4.s
fadd. s d5, d3dO. s, x: (r2)+n2dl. s, y:

x:(r6)+,d9.s y:,d8.s
X: (r4)+n4,d6.sy:,d7.s

fpy.s dé, d9, d1 y:(r7),d0.s

f npy d7, d8, d2 faddsub. s d4, do d2.s,y: (r5)+n5

f npy dé, d8, do fadd. s d2, d1 x: (r1),d6.sd0.s,y: (r7)+n7
f npy d7, d9, d2 faddsub. s di, d3 X:(r6)+,d9.sy:,d8.s

f npy deé, d9, do fsub. s do, d2 y:(rl)+nl,d7.s

f npy d7, d8, d3 faddsub. s d5, d2 d3.s,d4.d4.s,y: (r3)+n3
f npy d7, d9, d1 fadd. s d3, do x: (r0),d7.sdl.s,y: (r7)
f npy de, dg, d3 faddsub. s d7, do

faddsub.s d7,d5

faddsub. s dO, d4d7.s, x: (r3) y:(rd),d7.s

fsub.s d3, d1 x: (r4)+n4, dé. sy: (r0) +n0, d3. s

faddsub. s d3, di1ds. s, x:(r7)

faddsub. s di, d2 y:(r7),d6.s

nove do. s, x:(r2)dl.s, y:

faddsub. s d3, déd4. s, x:(r5)d2.s, y:

nove dé. s, y: (r7)

nove d3. s, y: (r3)

Figure A-1 Optimized Complex FFT for the DSP96002
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------------ SPECI AL RADI X-4 BUTTERFLY WTH SI MPLE TWDDLES ------------- *
;*****************~k*************~k*'k***********~k*'k***************************
*
_sr4
nove ro,r4
nove ri, r5
nove r3,r7
nove r2,ré
nove y:(r5)+dl. s
nove x:(r0)+,do.s y:(r7)+,d3.s
faddsub.s di, d3 x:(r2),d2.s
faddsub. s do0, d2 y:(r4),d5. s
faddsub.s doO, d1 x:(rl),d4.s y:(r6)+,d7.s
faddsub.s d5, d7 dl. s, x: (r2)+
faddsub.s d7,d3 x:(r3),d6é.s y:(r5)-,dl.s
faddsub. s d6, d4 do. s, x: (r3)+ d3.s,y: (r4)+
faddsub.s d2,d4 x:(r0)-,do.s d7.s,y: (r5)+n5
faddsub.s d5, d6 d2.s, x: (r1)+ y:(r7)-,d3.s
do nl, _st2
faddsub.s di,d3 x:(r2),d2.s d5.s,y: (r7)+n7
faddsub.s doO, d2 d4. s, x: (r0)+n0 y:(r4),d5. s
faddsub. s do, d1 x:(rl),d4.s y:(r6)-,d7.s
faddsub. s d5, d7 dl. s, x: (r2)+ dé. s, y: (r6)+n6
faddsub. s d7,d3 x:(r3),d6.s y:(r5)-,dl. s
faddsub.s d6, d4 do. s, x: (r3)+ d3.s,y:(r4)+
faddsub.s d2, d4 x:(r0)-,do.s d7.s,y: (r5)+n5
faddsub. s d5, d6 d2.s,x: (r1)+ y:(r7)-,d3.s
st2
nove d4. s, x: (r0) d5.s,y: (r7)
nove d6.s,y:-(r6)
rts

; _ponrj np_ponr ; REMOVE TH' S COWAND AND APPEND YOUR OM JCB
nop
nop
jrp *

T

e 2 o = = e *

Ckkkkkkkkkkkkhkk kA kkkkhhkkkkkkkkkkkkkkkkkhkhkkkkkkkhhhkkkkkkkkkkkkkkkkkkkkkkkkk k%
,

*

; SUBRQUTI NES FOLLOW NG

B )

R T
’
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* %

_nr2
nove
nove
nove
nove
nove
nove
nove

f npy.
fnpy
fnpy

do
do

fnpy
fnpy
f npy
f npy
_bfly
fnpy
f npy
f npy

fnpy
fnpy
f npy
fpy

nove

fnpy
fnpy
fnpy
fnpy
f npy
_endgrp
rts

endm

%
% Karl

fnpy. s

2]

fnpy. s

ro, r4
rl, r5
no, n1
no, n4
no, n5

ds, d7, d3

d9, d6, do

d9, d7, d1

ds, d6, d2

ds, d7, d3

n7, _endgrp

r7,_bfly

d9, d6, do
d9, d7, d1
ds, d6, d2
ds, d7, d3

d9, d6, do
d9, d7, d1
ds, d6, d2

ds, d7, d3
d9, d6, do
d9, d7, d1
ds, d6, d2

ds, d7, d3
d9, d6, do
d9, d7, d1
ds, d6, d2
ds, d7, d3

Schwar z,
% Lehrstuhl
% Universitaet

fsub.s

f addsub.

fadd. s

f addsub.

fsub.s

f addsub.

fadd. s

f addsub.

fsub.s

f addsub.

fadd. s

f addsub.

fsub.s

f addsub.

fadd. s

f addsub.

192

1]

[%2]

Rai nund Meyer
fuer Nachri chtentechni k

NCRVAL RADI X-2 BUTTERFLY

R
’

x: (r6)+n6, d9. s y:,d8.s
y:(rl1),d7.s
x:(rl)+,d6.s
y:(rl),d7.s
fadd. s d3,d0  x:(r0),d4.s
faddsub.s d4,d0 x:(r1)+d6.s

di1, d2
d5, d2
d3, do
d4, do

di1, d2
ds, d2
d3, do

d4, do
di, d2
d5, d2
d3, do

d4, do
di1, d2
d5, d2
d3, do
d4, do

Er | angen- Nuer nber g

; loop of groups
butterflyl oop

x:(rl)+nl,d6.s
do. s, x: (r4)
d4. s, x: (r5)
x:(r0),d4.s

x: (r6)+n6, d9. s

x:(rl)+d6.s
do. s, x: (r4)
d4. s, x: (r5)
x:(r0),d4.s
x:(rl)+ d6.s

% MATLAB-File to generate the radix-4 twiddl e factor table for the

% fast FFT-program RM X1. ASM .

% By increasing the variable fftlength you can make tabl es for higher
% FFT-1engths than 1024.

17.10. 1989

y:(r0)+,d5. s
y:i(rl),d7.s
d2.s,y: (r5)+
d5.s,y: (rd)+

r0)+ d5.s
rl),d7.s
2.s,y:(r5)+

s,y:(rd)+
(r0)+,d5. s
(r1),d7.s
2.s,y:(r5)+

y:,d8.s

(
(

y
y
d
ds.
y
y
d

d5.s,y: (rd)+
y: (r0)+n0, d5. s
y:(rl),d7.s
d2.s,y: (r5)+n5
d5.s,y: (r4)+n4

Figure A-1 Optimized Complex FFT for the DSP96002
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fftl engt h=1024
fog4=fftlength/ 4
fogdmi=fg4-1

x=0: f g4ndl

a=bi trev(x)
a=a(2:fg4)

i=1

c(i)=1

s(i)=0

=i+l

kon=2*pi /fftl ength
for k=1:fgdnl
c(i)=cos(kon*a(k))
s(i)=sin(kon*a(k))
i=i+1
c(i)=cos(kon*a(k)*3)
s(i)=si n(kon*a(k)*3)
=i+l
c(i)=cos(kon*a(k)*2)
s(i)=si n(kon*a(k)*2)
i=i+1

page 132,60

i ncl ude ‘ gen56’

reset equ
start equ
PA NTS equ
| DATA equ
CCEF equ

CDATA equ

;%real part of twiddle factor (cos)

;% i maginary part of twddle factor (sin)

Qptimzed Conpl ex FFT for the DSP56001/ 2
opt nond, nex, | oc, nocex, nu

incl ude ‘sincosc’
incl ude * bitrevtwd56’

include *cfft56'

; Latest revision - 14-Cct.-92

0

$40
512
$0
$800
$1000

si ncosc PQ NTS, GCEF

gen56 PA NTS, | DATA
opt nmex

org p: reset

jnp start

org p:start
nmovep #0, X: $FFFE

bi trevtwd56 PO NTS, CCEF
CFFT56 | DATA, CCEF, PO NTS, CDATA

;0 wait states
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nop
nop
jp *
end
Si ne- Cosi ne Table CGenerator for rfft56.asmand cfft56.asm

! Last Update 10/ 28/ 92
sincosc macro poi nt s, coef
sincosc ident 1,2

; sincosc - nmacro to generate sine and cosine coefficient

; | ookup tables for Decinmation in Time conplex FFT
; twiddle factors. Only points/4 coefficients

; are generted. For real FFT another points/4

; coefficients with higher freq. are created.

; points - nunber of points (2 - 32768, power of 2)
; coef - base address of sine/cosine table

; posi tive cosine value in X nenory

; positive sine value in Y nenory

D 812/92
pi equ 3. 141592654
;freq equ 2. 0*pi / @vf (poi nts*2)
; org x: coef - poi nts/ 2
; count set 0
; dup poi nts/ 2
; dc @os(@vf (count)*freq)
; count set count +1
; endm
; org y: coef - poi nts/ 2
; count set
; dup poi nts/ 2
; dc - @i n(@vf (count)*freq)
; count set count +1
; endm
freql equ 2. 0*pi / @vf (points)

;int i, j =1k, tnp=0;
; k=1<<(length-1);
;o for(i=0;i<length;i++){
; if (integer& ) tnp=tnp|k;
; 3 <<l
; k=k>>1;
org x: coef
count  set 0
dup poi nts/ 4
dc @os(@vf (count)*freql)
count  set count +1
endm
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org y: coef
count  set 0
dup points/ 4
dc @i n(@vf (count)*freql)
count  set count +1
endm
endm ;end of sincosr nacro
bi t r evt wd56 macr o PQ NTS, CCEF
bi t revt wd56 i dent 1,2
; bitrevtwd - macro to sort sine and cosine coefficient
; | ookup tables in bit reverse order for 56156
; PO NTS - nunber of points (2 - 32768, power of 2)
; QCEF - base address of sine/cosine table
; negative cosine (W) and negative sine (W) in X nenory
; Vi Chen
; July-28, 1992
nove #OCEF,rl ;twiddl e factor start address
nove #0, nD ;bit reverse address
nove #PQA NTY 8, n0 ;sincosr use N4 points data,
;offset for bit rev. is N8
nove #PQA NTS 4-1, n2
nmove r1,r0 ;rl ptr to nornmal order data
move (rl)+ ;no swap on 1st data
nove (r0)+n0 ;r0 ptr to bitrev
do n2, _end_bit ;does N 4-1 points swap
nove r1,x0
nove r0,b
cnp x0, b
jogt  _swap
nove (rl)+ ;N0 swap but update points
move  (r0)+n0
jnp _not hi ng
_svap
mve rl,r5
nmove r0,r4
nmove x:(r1),x0 y:(r5),y0
nove x:(r0),a y:(r4),b
nove X0, x:(r0)+n0 yO0,y:(r4)
nmove a, x:(rl)+ b,y: (r5)
_not hi ng
nop
_end_bit
endm ;end of bitrevtwd macro

Figure A-1 Optimized Complex FFT for the DSP96002
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Input signal for FFT rfft56.asmand cfft56.asm
. Last Update 10/28/92
gen56  macro PO NTS, | DATA

; gen56 - macro to generate input signal for FFT test on 56001
; 2000 Hz sinewave with scaling factor PONTS in X and Y nenory

PQ NTS - nunber of points (2 - 32768, power of 2)

; | DATA - base address of signal
’sr ate set 44100 s He

ffreq set 2000 T H

ppi equ 3. 141592654

freq2 equ 2. 0*ppi *ffreq/ @vf (srate)

org x: | DATA
count  set 0

dup PA NTS

dc @i n(@vf (count)*freq2)/ PO NTS
count  set count +1

endm

org y: | DATA
count  set 0

dup PA NTS

dc @i n(@vf (count)*freq2)/ PO NTS
count  set count +1

endm

endm ;end of gen56 macro

512- Poi nt, 28174 clock cycles Non-In-Pl ace FFT.

; Sept. 11 92 Version 1.0

’CFI—‘I'56 nmacro | DATA, CCEF, PO NTS, CDATA
CFFT56 i dent 1,0

512 Poi nt Conpl ex Fast Fourier Transform Routine
using the Radix 2, Decimation in Tine, Cool ey-Tukey FFT al gorithm

This routine performs a 512 point conpl ex FFT by taking advant ages of
1). internal menory access by starting first half data at |ocation O,
avoi d cycl e stretching;
2). using N4 conplex twiddl e factors based on the fact that two
; consectivetwiddle factors in DT FFT has a difference -j
; 3). trivial twiddle factors (1,0) and (0,-1) are utilized.
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; Conpl ex input and output data

; Real data in X nenory

; I magi nary data in Y menory

; Normal |y ordered input data

; Bit reversed output data for 1024 real input FFT
; Coefficient |ookup table

; +Cosi ne val ues in X nenory

; -Sine values in Y nenory

Address pointers are organi zed as foll ows:

; rO = ar,ai input pointer n0 = group of fset n0 = nodul o (points)

; rl = br,bi input pointer nl = group of f set nml = nodul o (points)

; r2 = ext. data base address n2 = groups per pass n2 = 256 pt fft counter
; r3 = coef. offset each pass n3 = coefficient base addr. n8 = linear

; r4 = ar’,ai’ output pointer n4 = group offset m} = nodul o (points)

; r5 = br’,bi’ output pointer n5 = group offset nd = nodul o (points)

; ré = w,w input pointer n6 = coef. offset n6 = bit reversed

; r7 = not used (*) n7 = not used (*) ny = not used (*)

; * - r7, n7 and nv are typically reserved for a user stack pointer.

Aters Data ALU Registers

; x1 X0 yl yo0
; a2 al a0 a
; b2 bl b0 b
; Alters Address Registers
; ro n0 no
; rl nl mL
; r2 n2 ng
; r3 n3 nB
; ra n4 i
; r5 n5 nd
ré né 6

; Alters Program Control Registers
; pc sr

Uses 8 | ocations on System Stack

: Initialize pointers to r0->Ar,r1->Q,r4->Bi,r5->0, and r3->tenp | ocation
; 10,rl,r4, and r5 are nodul ar addressing with nodulo N2 ;

nmove # DATA r0 ;r0 -> Ar
nove ro, n3
nove #CDATA, r 3 ;13 always has CDATA
nove #QCEF+1, n6 ;n6 al ways has QCEF, (0,1) is not used
nove #PQA NTS/ 4, n0 ;offset and butterflies per group
Figure A-1 Optimized Complex FFT for the DSP96002 (sheet 14 of 20)
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nove #PQA NTS/ 2-1, n0 ; modul o addr essi ng
nmove r0,r6 ;r6=0 flag reg. for trivial groups
do #3, _end_trivial ;do three R4 passes
nove nO, nl ; poi nter of fset
nove nO, n4 ; poi nter of fset
move n0, n5 ;

| ea (r0)+n0, r4 r4 -> Bi

nove ,

| ea (rd)+n4,r1 rl -> QO

nmove nO, ni ;

move noO, n

| ea (r1)+nl, r5 ;r5->D

First two passes are conbined into a R4 pass wi thout multiplication ’ ;
; because W=1,W=0 in first R2 pass and W=0, W=-1 in 2nd R2 pass ;

A =AHQH(Br D) B sA+Q-(Br+D) Q' =(A-Q)#H(Bi-D) D =(A-Q)-(B-D);
. A=A+O+B+0) B'=A+0-(B+D) Q'=(A-Q)+«(D-B) D'=(A-0)-(Dr-B);

; This two passes fully ultilize internal nenory by storing input data at |ocation 0
; For 1024-poi nt conpl ex FFTs, only 256-point in internal, rest of themin

; external, 17+2 instructions are needed for one butterfly because first and next to
; the last instruction in the | oop takes two Icycles. Gher parallel nove seens to;

; take two cycles, but one of the two noves is internal, only one cycle is needed. ;
; 4.75 Icycles per R2 butterfly inthe fisrt two passes. ;

For 512-poi nt conpl ex FFT, 17+1 instructoins are used because first instruction |n
the | oop takes only one Icycle. 4.5 1cycles per R butterfly. ;

For 256 or | ess poi nt conpl ex FFT, 17 I cycl es are needed. 4.25 | cycl es/bfly.

nove x: (r0)+n0, a ; a= A r0 -> Br
nove x: (r1)+nl, b ; b=CO,r1 ->D
do noO, _t wopass
add a,b x:(r0)+n0,x1 vy:(r5)+n5,yl ;b=Ar+Q,x1=Br,yl=D,r0->Ar,r5->0
subl b,a b, x:(r0) y:(r4),b ;a=Ar-Or,save Ar+Or tenp in Ar, b=Bi
add yl,ba,x0 y:(rd)+n4, a ; b=Bi +Di , Xx0=Ar- O, a=Bi agai n,
;save Ar-Q in Dr,r4->A

sub yl,a b,x:(r3)x0,b ;a=Bi-Di,store Bi+D tenp in x: CDATA b=Ar-Or
sub a,b x:(rl1),x0 ;b=Ar-O-(Bi-D)=Dr",x0=Dr,r0 -> Ar
addl b,a b,x:(r1)+nl1 x0,b ;a=Ar-O+(Bi-D)=C",save D', b=Dr,rl1->O
sub x1,ba,x:(r1)+ X0, a ;b=Dr-Br,save ', a=Dr,rl1->nQr
add x1,ax:(r0)+n0,b b,yl ;a=Dr +Br, b=Ar+Or, y1=Dr-Br,r0->Br
sub a, b y: (r5),y0;a=Ar+O - (Dr+Br) =Br’, y0=G
addl b,a b,x:(r0)+n0 vy:(rd),b ;a=Ar+O +(Dr+Br)=Ar",save Br’',r0->Ar, b=A
sub y0,b a,x:(r0)+ y:(r4),a ;b=Ai-G,a=A again, save Ar’,r0->nAr
add vy0,ax:(r3),b b, yO ;a=Al +0,y0=Ai -Q ,b=Bi +D, r5->0
add a, b ; b=Al +Q +(Bi +Di ) =Ai’
subl b,a y0,b b, y: (r4)+n4 ;a=Al+G -(Bi+D)=B',b=A -G, save A’
add yl,by0,a a,y:(rd)+ ;b=A-A+(D-Br)=G"',a=Al -0, save B ', r4->nBi
sub yl,ax:(rl)+ni, b,y:(r5)+n5;a=Ai -G -(Dr-Br)=D’, b=nC, save G,
nove x:(r0)+n0, a a,y:(r5)+;a=nAr, save D', r5->nD

_twopass
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nove
_no_nore
nove
asr
asr
nove
4 pass
nove
nove
_end_trivial
nove
nove
nove
nove
nove
do
add
subl
add
sub
nove
_extra

| n each pass,

; Dorest of trivial group by 5 Icyc butterfly

; ACA ---->
; BryBio---->

n5, a ;n5 contains ptr to Ar al ready
a n5,rl i r1->Ar

a, nl ;get of fset

rl,r5 i r5->A

(r1)+nl,r4 ;r4->Bi

#2, n4 ; for pointer

rd,r0 ;r0->Br

x:(rl),a y:(rd)+b ;a=Ar, b=Bi,

nl, _no_nore ;w=(0,-1), R2 butterfly

a,b x:(r0),x0 y:(rd4)- ; b=Ar +Bi =Ar’ , X0=Br, yO=nBi

b,a b,x:(r1)+ y:(r5),b ;a=Ar-Bi=Br’, save A’ , b=A
x0,b a,x:(r0)+ y:(r5),a ;b=Ai +Br=Bi ', save Br’,a=Ai again
b,a y0,b b,y:(r4)+n4 ;a=A-Br=Ai’,save Bi’, b=nBi
x:(rl),a ay:(r5+ ; a=nAr, save A’

no, a

a n3,r0 ; 10- > DATA

a ar2

a, n0 ;(points in agroup)/4 after a radix
x:(r2)- ;dec r2

r2,nd

ro, r4 ;out put poi nter

nl, rl ;rl1->Br

rl, r5 1 r5->Bi

x:(r0),a s a=Ar

x:(rl),b ; b=Br

nl, _extra ;wW=(1,0)

a, b y:(r5),y0 ;b=Ar+Br=Ar’, yO0=Bi

b,a b, x:(r0)+ y:(r4),b ;a=Ar-Br=Br’,save Ar', b=A
y0,b a, x:(r1)+ y:(r4),a i b=A +Bi =Ai ' , save Br’', a=A
y0,a x:(rl1),b b,y: (r4)+ ;a=Ai-Bi=Bi’,save A, b=nBr
x:(r0),a a,y: (r5)+ ;a=nAr, save Bi’

;nomul tiplicationiscarriedout.

| |
| Radix-2]----> A'=A + W*Br
| Butterfly|----> Br'=A - W*Br
| | B =A - W
N
W W-jW

; Renai ni ng passes are broken down to PO NTS/ 256 sets, ;

; each set has 256-point R2 FFT ;
and runs on internal data and external coefficients.

first two groups takes advantages of trivial twddl e factors and

Renai ni ng gr oups use conpl ex twi ddl e fact ors.

; Radix 2, Decimation In Tine Cool ey- Tukey FFT al gorithm ;
A=A + W*Br

- W*Bi
+ W*Bi ;
+ W*B = 2*Ar - A ;
- W*Bi = 2*A - A’ ;

Figure A-1 Optimized Complex FFT for the DSP96002
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; r0->Ar1->B,r4->A ,r5->B,r6->TF, n0=of fset for B pointer,
; n2=nunberof bflies in a group ;
; n3=nunber of groups in a pass, nB=nunber of pass. r2=n3 or n3+1

nove n2, n0 ;linear address

nove ng, m

nove ng, i

nove n2, nb

nmove #PA NTY 4,10 ;start location of a pass
nove #4, n8 ;4 passes in first 256-point
nove #PQA NTS/ 16, n0 ;offset to point to Br and Bi
nove n0, n1

nove no, n4

nove no, n5

nove neé, r6 ; 1 6->CCEF

nove n0, n2 ;nunber of bflies in the first pass=R2 bfies/4
| ea (r0)+n0, r1 i r1->Br

nove ro,r4 T r4->A

| ea (r1)-,r5 ;r5->Bi-1 for pointer reason
jsr _body

The second 256-point FFT has no any trivial twiddl e factors,
; three nested | oops do it

nove #256, r0 ;start location of first pass in 2nd 256
nove #5, n8 ;5 passes in second 256- poi nt
nove #PA NTY 8, n0 ;offset to point to Br and Bi
nove #OCEF+1, r 6 ;twiddl e factor pointer

nove no, n1

nove no, n4

nove # DATA r4 ;r4->A = DATA

nove no, n5

| ea (rd4)+n4, r5 i r5->B

| ea (r0)+n0, r1 ir1->B

nove x:(r5)-,a ;r5->B -1 for pointer reason
jsr _body

jnp _end_FFT

; Al subroutines

body
nove #1,n3 ;nunber of groups in a pass
nove n3,r2 ;copy of n3
j set #0,nB, _set_grp; first 256-point has nunber of group 1,3,7,15,..
nove #2,r2
_set_grp
do n8, _i nner _| oop
jsr _inner_pass
nove no, a
asr a #| DATA, r 0; r 0=l DATA
nove a, n0 ;n0=of fset of B
nove r2,a
asl a nO, n1
nove a,r2 ,r2=r2*2
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asr b r2,n3 ; n3=nunber of groups in second 256
j set #0,n8B, _i nner_set ;set up start address, for 2nd 256-point rOis al ready ok
lea (r2)-,n3 ;n3=nunber of groups in first 256
nove n4,a
asl a neG, r6 ;for 1st 256, TF always starts at first location
nove a, r0 ;rO=start location of first 256-point
_inner_set
nmove nO0, n4
nove nO, n5
nove no,r4
lea (r0)+n0,r1 ;rl->B
nmove r0,r4 i r4->A
lea (rl1)-,r5 i r5->B
_inner_| oop

nmove #l DATA r0

nove #32,n2 ;n2=nunber of groups in the next to |ast
;pass for 1st 256

jset #0,n8,_no_set ;set up start address of TF, for 2nd
;256-point r6 is already ok

nove #QOCEF, n6 ;now n6 -> CCEF

nove no6,r6 ; r 6=CCEF

lea (r0)+n0,r1 ;r1->Br

move r0,r4 T r4->A

_no_set

nmove #-1,r5 ;r5->Bi

nove #3, n0

nove no, nl

nmove no, n4

nmove no, n5

jsr _next_|ast ;do the pass next to |ast

nove # DATA r 0 ; r0->| DATA
nmove r3, r4d ;r4->A output ptr -> external nenory
jelr #0, n8, _add_of f set ;set up output address for 2nd 256- poi nt
nove #256, n3
nove r6, n6 ;start address of TF for 2nd 256
| ea (r3)+n3,r4
_add_of f set

| ea (rO)+,rl ;rl->B
|l ea (rd)-,r5 i r5->B
nove #64, n2 ;nunber of blies in the |ast pass
nove #2,n0
nove n0, n1
nove no, n4
nove no, n5
nove ne, r6 ; 1 6=CCEF
jsr _last
rts
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_inner_pass

do n3, _end_grp ;do groups in a pass
nove x:(r5),a ;for pointer reason, a=sonet hi ng
nove x: (r6), x0 y:(r0),b ; X0=W, b=A
nove x:(rl),x1 y: (r6)+y0 ; X1=Br, yO=W
do no, _end_bfyl ;Radix 2 DT butterfly kernel
;with yo=W, x0=W
mac -x1,y0,b y:(rl)+yl ;b=A -BrW, yl1=Bi, rl->nBi
macr x0,yl,b a,x:(r5+ y:(r0),a i b=A -BrW+Bi W=A ",
;save prev.Br’, a=A
subl b, a x:(r0), b b,y: (r4) ;a=2Ai -A ' =Bi ', b=Ar, save A’
mac  x1,x0,b x:(r0)+a a,y:(r5) ; b=Ar +Br W, a=Ar, save Bi ', r0->nA
macr y1l,y0,b  x:(rl),x1 s b=Ar +Br W+Bi W=Ar', x1=nBr
subl b, a b, x: (r4) + y:(r0),b ;a=2Ar-Ar’ =Br’
;save Ar’, b=nAi, r4->nAr
_end_bfyl
nove a, x:(r5)+n5 y:(rl)+nl,b ;save preve. Br’ inc r5 and rl
nove x:(rd4)+nd,a y:(r0)+n0,b ;inc r0,r4
nove x:(rl),x1 ; X1=nBr
nove x:(r5),a y:(r0), b ;for pointer reason,
; a=sonet hi ng, b=nGAr
do no, _end_bfy2 s WE-j W
mac -x1,x0,b y:(rl)+ vyl ;b=Ai -BrW, y1=Bi, r 1- >nBi
macr -y0,yl,b a x:(r5)+y:(r0),a ;b=Ai -BrW-Bi W=A",
;save prev. Br’,a=A
subl b, a x:(r0), b b,y: (rd) ;a=2Ai -Ai'=Bi’, b=Ar, save A’
mac -x1,y0,b x:(r0)+a a,y:(rb) ; b=Ar-BrW, a=Ar, save Bi’, r0->nA
macr y1,x0,b x:(rl),x1 ; b=Ar- Br W+Bi W=Ar", x1=nBr
subl b, a b, x: (r4)+ y:(r0),b ;a=2Ar- A’ =Br',
;save Ar’, b=nAi,r4->nAr
_end_bfy2
nove a,x:(r5+n5 y:(r1)+nl,b ;save preve. Br’ inc r5 and r1
nove x:(r4)+nd,a y:(r0)+n0,b ;inc r0,r4
_end_grp
rts
_next _| ast
nove x:(r5),a y:(r0),b ; a=sorret hi ng, b=A
nove x:(rl),x1 y:(r6),y0 ; x1=Br, yO=W
do n2, _n_| ast ;do the pass next to |ast,
;internal to internal
mac  -x1,y0,b x:(r6)+, x0 y:(rl)+y ; b=Ai - BrW, x0=W, y1=Bi, r1->nBi
macr x0,yl,b a,x:(r5+n5 y:(r0),a cb=A -BrW+Bi W=A ",
;save prev. Br’',a=Ai
subl b, a x:(r0), b b,y: (r4) ;a=2Ai -A ' =Bi ', b=Ar, save A’
mac  x1,x0,b x:(rO)+ a a,y:(rb5) ; b=Ar+Br W, a=Ar, save B ', r0->nA
macr yl,y0,b  x:(rl),x1 s b=Ar +Br W+Bi W=Ar' , x1=nBr
subl b, a b, x: (r4)+ y:(r0),b ;a=2Ar- A =Br’,

;save Ar’, b=nAi, r4->nAr

mac -x1,y0,b y:(rl)+nl,yl ;b=A-BrW,yl=Bi, rl->nGBi
macr x0,yl,b a,x:(r5+ y:(r0),a ; b=A -BrW+Bi W=Ai ",

;save prev. Br’,a=A
subl b, a x:(r0),b b,y: (r4) ;a=2A -Ai'=Bi ', b=Ar, save A’
mac x1,x0,b x:(rO)+n0,a a,y:(r5) s b=Ar+Br W, a=Ar,

;save Bi’,r0->nCGA
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macr y1l,y0,b  x:(rl),x1 s b=Ar +Br W+Bi W=Ar" , x1=n@@r
subl b, a b, x:(r4)+n4 y:(r0),b ;a=2Ar-Ar’=Br’,save Ar’,
; b=nGA , r 4- >nGAr
mac -x1,x0,b y:(rl)+y1 ;b=Ai -BrW, y1=Bi, r 1- >nGBi
macr -y0,yl,b a,x:(r5)+n5y:(r0),a ;b=A -BrW-Bi W=A",
;save prev. Br’,a=A,r5->nCBi
subl b, a x:(r0), b b,y:(r4) ;a=2Ai-A’'=B’, b=Ar,save A’
mac -x1,y0,b x:(r0)+, a,y:(r5) ;b=Ar-BrW, a=Ar, save B ', r0->nCGA
macr y1,x0,b x:(rl),x1 s b=Ar-BrW+Bi W=Ar", x1=nBr
subl b, a b, x: (r4)+ y:(r0),b ;a=2A - A =B,

;save Ar’, b=nAi, r4->nGAr

mac -x1,x0,b y:(rl)+nl,yl ;b=A-BrW,yl=Bi,r1l->nBi
macr -y0,yl,b a,x:(r5+ y:(r0),a ;b=A -BrW-Bi W=A",
;save prev. Br’',a=A,r5->Bi
subl b, a x:(r0), b b,y:(r4) ;a=2Ai -Ai ' =Bi’, b=Ar, save A’
mac -x1,y0,b x:(rO)+n0,a a,y:(r5) i b=Ar-BrWwW, a=Ar,
;save Bi’, r0->nCGA
macr y1,x0,b x:(rl),x1 y:(r6),y0 ; b=Ar- Br W+Bi W=Ar",
; X1=nBr, yO=nW
subl b, a b, x:(rd4)+nd y:(r0),b ;a=2Ar- Ar’ =Br’ , save Ar’,
;b=nAi , r4->nG\r
_n_| ast
nove a, x: (rb5)
rts
_last
nmove Xx:(r5),a y:(r0),b ; a=sorret hi ng, b=A
nove Xx:(rl),xly:(r6),y0 ; X1=Br, yO=W
do n2, _end_| ast ;do last pass, internal to external

mac  -x1,y0,b x:(r6é)+ x0 y:(r1)+nl,yl ;b=A -BrW,x0=W,yl=Bi, rl1->nCBi
macr x0,yl,b a,x:(r5+n5 y:(r0),a ;b=A-BrW+BW=A",

;save prev. Br’',a=A
subl b, a x:(r0), b b,y:(rd4) ;a=2Ai-A'=Bi',b=Ar,save A’
mac  x1,x0,b  x:(rO)+n0,a a,y:(r5) ;b=Ar+BrW, a=Ar,save Bi',r0->nCGA
macr yl,y0,b  x:(rl),x1 ; b=Ar +Br W+Bi W=Ar" , x1=n@Br
subl b,a b,x:(rd4)+nd4  y:(r0),b ;a=2Ar-A’ =Br’,

;save A’ , b=nGA , r4->nGAr

mac -x1,x0,b y:(rl)+nl,yl ;b=A-BrW,yl=Bi,r1->nCBi
macr -y0,yl,b a,x:(r5)+n5 y:(r0),a ;b=A-BrW-B W=A",
;save prev. Br’,a=A,r5->Bi
subl b, a x:(r0), b b,y:(rd) ;a=2Ai-A’'=Bi’,b=Ar,save A’
mac  -x1,y0,b x:(rO)+n0,a a,y:(r5) ;b=Ar-BrW, a=Ar, save Bi ', r0->nCA
macr y1,x0,b x:(rl),x1 y:(r6),y0; b=Ar-BrW+B W=Ar",
; x1=nBr, yO=nW
subl b, a b, x:(r4)+n4  y:(r0),b ;a=2Ar-A’'=Br’,
;save Ar', b=nA,r4->nGAr
_end_| ast
nove a, x: (rb5)
rts
_end_FFT
endm
Figure A-1 Optimized Complex FFT for the DSP96002 (sheet 20 of 20)
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APPENDIX B

Real-Valued Input FFT

B.1 Faster real FFT for the DSP96002

page 132,60,1,1
opt nex

Ckkk kKRR KR KA A KKK KRR Rk khkk kA Rk khhkk Ak khkkkkkk
,

;Motorola Austin DSP Qperation 20 August 1992

B T Y

; Test program for DSP96002 rfft96. asm
EEEEEE R RS E RS SRR S SRS E RS SRR E RS SRR R R SRR R R EEEEEEEEE S S
1024 real -val ued i nputs
Maxi num sanpl e rate: 0.58 ns at 40.0 Miz
Menory Size: Prog: 141 + 32 words ;
Dat a: 2*1024 wor ds(i dat atodata) + 256 words (twi ddl e factor)
Nunber of clock cycles: 23200 (11600 instruction cycl es)
d ock Frequency: 40.0ME
Instruction cycle tinme: 50.ns

R R

Real - Val ued | nput Radi x 2 Cool ey- Tukey Decinmation in Tine FFT

; nornmal ly ordered i nput data
; normal |y ordered output data

PR s R
,

; Equates Section

B R R

RESET equ $00000000 ; reset isr
MAI N equ $00000100 ; main routine
points equ 512 ; poi nts=real data nunber /2
passes equ 9 ; 1 0g2( poi nt s) =passes
idata equ $0
odat a equ $1000
coef equ $800
Figure B-1 Faster real FFT for the DSP96002 (sheet 1 of 4)
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BCRA equ $FFFFFFFE ; port a bus control reg
BCRB equ $FFFFFFFD ; port b bus control reg
PSR equ $FFFFFFFC ; port select reg
i ncl ude ‘ si ncosf . asm ;using external cos and sin table,
;if useinternal ROM delete this line
i ncl ude ‘ gen96. asm

i ncl ude ‘cfft96. asm
i ncl ude ‘split96. asnm

B R R
R R
,

si ncosf poi nt s, coef ;twiddle factor for split is afull cycle sinand cos
gen96 points, idata
org p:MAIN
novep #$0, x: BCRA ; no wait states for portb P, X Y,1/0
novep #$0, x: BCRB ; ...don't care about page fault
novep #$00FFOOFF, x: PSR ; external X menory on Port-B
; Y:menory on Port-A
bclr #$3, onr ; disable the internal data ROW

CFFT96 poi nt s, passes, i dat a, coef , odat a
SPLI T96 poi nt s, coef, odat a

nop

nop

jmp ¥

END

; Sine-Cosine Table Generator for rfft96.asm
Last Update 5 August 92

éi ncosf nmacro poi nt s, coef
si ncosf ident 1,2

si ncosf - macro to generate sine and cosine coefficient
; | ookup tables for Decimation in Tine FFT
; twiddl e factors.

; points - nunber of points (2 - 32768, power of 2)
; coef - base address of sine/cosine table

; posi tive cosine value in X nenory

; positive sine value in Y nenory

L g12/92

pi equ 3. 141592654
freq equ 2. 0*pi / @vf (poi nt s*2)
org x: coef - poi nt s/ 2
Figure B-1 Faster real FFT for the DSP96002 (sheet 2 of 4)
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count set 0

dup poi nts/ 2

dc @os(@vf (count)*freq)
count set count +1

endm

org y: coef - poi nts/ 2
count set

dup poi nts/ 2

dc - @i n(@vf (count)*freq)
count set count +1

endm
freql equ 2. 0*pi / @vf (poi nts)

org x: coef
count  set 0
dup poi nts/ 2

dc - @os(@vf (count)*freql)
count  set count +1
endm

org y: coef
count  set 0
dup poi nts/ 2

dc - @i n(@vf (count) *freql)
count  set count +1
endm
endm ;end of sincosf nacro

R T
’

: split N2 Conplex FFT(Hh) for Nreal FFT(Fn)

‘SPLI T96 macro points, coef, odat a
SPLIT96 ident 1,2

Fi =0. 5(H +H/ 2-1*)-0.5) (H - H/ 2-i *)Wi=0,1,,, N1

points is real data /2

nove #points-1, n0 ; nunber of conpl ex FFT i nput data
nove #points/2-1,n4 ;1 oop count er

nove #odata,r0 ;r0 ptr to A=H

nmove r0,r4 ;rd ptr to A

nove #-1,n6 ;linear address

nove n®6, nb nove e, ni

nove #coef-points/2+1,r6 ;twiddle factor start |ocation
lea (r0)+n0,r1 ;rl optr to B= H/ 2-i

nove rl1,r5 ;r5 ptr to B

nove Xx:(r0)+,d0.s y:,dl.s ; DC=Ar 0+A 0

faddsub.s do, d1 x:(r0)+,d2.s y:,d3.s ; dO=N quest =Ar 0- Ai O,
; d1=DC, d2=Ar, d3=Ai
nove dil.s,x:(r4)+ do.s,y: ;save DC and N g

Figure B-1 Faster real FFT for the DSP96002 (sheet 3 of 4)
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nmove x:(rl)-,d7.s y:,dl.s
faddsub. s d7, d2 x:(ré)+,d8.s y:,d9. s

frnpy d9,d7,d0 faddsub.sd3, dl

fnpy. sd8, di,dl dl.s, d6.s
nove #0.5,d4.s

Hir=Ar+Br, HLli=Ai-Bi, H2r=Ai+Bi, H2i=Ar-Br
=(HLr+*W* H2r - W* H2i ) / 2

=(HLr- (W*H2r-W*Hi )/ 2

" =(W* HRr - W HRI +HLI )/ 2

" =((W*H2r - W*HRi ) - HLi ) / 2

x

do n4,_end_split

fnpy d4,d0,d0 faddsub.s
; d0=Bi ', d1=nAr +nBr, d7=nBr - nAr =nH2i , d3=nAi

; dO=nW*nH2i , d2=nA +nBi =nH2r, d3=nAi - nBi , save B’

fnpy.s d8,d2,d1 d2.s,d6.sd6.s,y: (r4)+
_end_split

nove y:(r4),do.s

fneg. s do

nove do.s,y:(r4)

endm

d2.s,d5. s; dO=W*H2i , d3=A - Bi =HLi ,

fnpy d8,d7,d2 fsub.s do,dl x:(rl),d7.s ;d2=-W*H2i, di=W*Hor-
s WrH2i, d7=nBr
fnpy d9,d6,d0 faddsub.sd5,dl x:(r6)+,d8.s y:,d9.s

; dO=W*H2r, d1=2*Ar’,d5=2*Br’, d8=nW, d9=nW
fnpy d4,d5,d2 fadd.s d2, do x:(r0),dl.s dl.s,d6.s
;d2=Br’, dO=W*H2r-W*H2i, d6=2*Ar’,dl=nAr
fnpy d4,d6,d2 faddsub.s doO, d3 d2.s, x: (r5) ;d2=Ar’, d3=2*A",
;d0=2*Bi’ , save Br’
fnpy. sd4, d3, d3 d2. s, x: (r4) y:(rl)-,d2.s ;d3=A", save Ar’,d2=nBi

d7,d1 d3.s,d6.s

frnpy d9,d7,d0 faddsub.sd3, d2 di.s, d5.sd0.s,y: (r5)

; d7=Br, d1=Bi

; d7=Br - Ar=- H2i ,

; d2=Ar +Br =Hlr, d8=W, d9=W <0
; d1=A +Bi =H2r , d5=Hlr

; d1=W*H2r, d6=Hzr

; d4=0. 5

;do points/2-1

y:(r0)+,d3.s

; d1=nW*nH2r, d6=nH2r, save A’

;conjugate of last Al el enent

;split

Figure B-1 Faster real FFT for the DSP96002
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B.2 Real FFT for DSP56001/2

This programoriginally available on the Mtorola DSP bul |l etin board.
; It is provided under a DI SCLAMER OF WARRANTY avai | abl e from
Mot orol a DSP (peration, 6501 Wn Cannon Drive W, Austin, Tx., 78735.

; 1024-Point Real Input Non-In-Place FFT. (test programn

; 34886 clock cycles. Sanpling period can be 0.87215ns @40 Mz clock rate
Use 292 program words, 4*512 words for data and 2*(128+256) words for twi ddl e
factor

Store EVEN index input data to X menory and CDD index input data to Y.

Assune scal ing down at input, i.e. all input data are divided by 1024 before FFT.
The outputs of this real input FFT are twice larger than true values. |If the
original FFT values are desired, scaling up factor should be 512.

‘sincosr’ generates twiddle factor for FFT.

‘bitrevtwd56’ sorts the twiddle factor in bit-reverse order.

The generation and reordering of twiddle factors can be done of f-1line.
‘gen56’ generates input test signals, delete it if you provide input.

; ' CFFT56’ does 512 points FFT.

; ' SPLIT56" extractes 512-point conpl ex val ues for real input FFT.

Only DC to N quest frequency are cal cul ated by this program

I nput data al ways starts at | ocation | DATA=0, a 512-conpl ex buffer starts at any
external nenory |ocation, CDATA is required to hold 256-point output data
groups.

The output of the FFT replace the inputs started at | DATA
X: | DATA contains DC*2 and Y: | DATA contains N quest*2.

REFTS6Ti dent 1,0

page 132,60
opt nond, nonex, | oc, nocex, nu

i ncl ude ‘sincosr’

i ncl ude ‘ bi trevtwd56’
i ncl ude ‘ gen56’

i ncl ude ‘cfft56°

i ncl ude ‘split56

; Latest revision - Nov. 11 92

reset equ 0
start equ $40
PA NTS equ 512
| DATA equ $00
CDATA equ $1000
OCEF  equ $800
si ncosr PO NTS, CCEF
gen56 PQ NTS, | DATA
Figure B-2 Real FFT for DSP56001/2 (sheet 1 of 5)
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opt nex
org p: reset
jnp start
org p:start
novep #0,x:$fffe ;0 wait states
bi t r evt wd56 PA NTS, CCEF
CFFT56 | DATA, CCEF, PA NTS, CDATA
SPLI T56 | DATA, CCEF, PQ NTS, CDATA
end
; Sine-Cosine Table CGenerator for rfft56.asm
. Last Update 11/11/92
’si ncosr nacro poi nt's, coef
sincosr ident 1,2
si ncosr - macro to generate sine and cosine coefficient
| | ookup tables for Decimation in Tine real FFT
; twiddle factors. Only points/4 coefficients
; are generted. For real FFT another points/4
; coefficients with higher freq. are created.
points - nunber of points (2 - 32768, power of 2)
; coef - base address of sine/cosine table
; posi tive cosine value in X nenory
; positive sine value in Y menory
L g1
pi equ 3. 141592654
freq equ 2. 0*pi / @vf (poi nt s*2)
org x: coef - poi nt s/ 2
count  set 0
dup poi nts/ 2
dc @os(@vf (count)*freq)
count  set count +1
endm
org y: coef - poi nts/ 2
count  set 0
dup poi nts/ 2
dc -@in(@vf (count)*freq)
count set count +1
endm
freql equ 2. 0*pi / @vf (poi nt s)
org x: coef
count  set 0

Figure B-2 Real FFT for DSP56001/2
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dup poi nts/ 4

dc @os(@vf (count)*freql)
count  set count +1

endm

org y: coef
count  set 0

dup poi nts/ 4

dc @i n(@vf (count)*freql)
count  set count +1

endm

endm ;end of sincosr macro

bitrevtwd56 macro PQ NTS, CCEF

bi trevtwd56 ident 1,2

: bitrevtwd - macro to sort sine and cosine coefficient

; | ookup tables in bit reverse order for 56156

; PA NTS - nunber of points (2 - 32768, power of 2)
; QCEF - base address of sine/cosine table
; negative cosine (W) and negative sine (W) in X menory

; Vi Chen

; July-28, 1992

' nove #COCEF, rl1 ;twiddle factor start address
nove #0, n0 ;bit reverse address
nove #PQA NTS/ 8, n0 ;sincosr use N4 points data,

;offset for bit rev. is N8
nove #PQA NTS 4-1, n2

nmove r1,r0 ;rl ptr to normal order data
nove (rl)+ ;no swap on 1st data
nove (r0)+n0 ;r0 ptr to bitrev
do n2, _end_bit ;does N 4-1 points swap
move rl,x0
nove r0,b
cnp x0, b
jgt _swap
nmove (rl)+ ;no swap but update points
nove (r0)+n0
jnp _not hi ng
_swap
move r1,r5
move r0,ré4
nove x:(rl),x0 y:(r5),y0
move x:(r0),a vy:(rd),b
move X0, x: (r0)+n0 y0,y: (r4)
nove a,x:(rl)+ b,y:(r5)
_not hi ng
nop
_end_bit
endm ;end of bitrevtwd nacro
Figure B-2 Real FFT for DSP56001/2 (sheet 3 of 5)
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Split N2 Conplex FFT(Hn) for Nreal FFT(Fn)
éPLI T56 macro | DATA, CCEF, PA NTS, CDATA
SPLI T56 i dent 1,0

Fi =0. 5(H +Hn/ 2-i*)-0.5] (H-H/ 2-i*)Wi=0,1,,, N1

: Bit reverse input, Normal order output
; This macro anplifies coefficients of FFT by 2.

assuming inputs are scal ed by 2°N before conpl ex FFT.
PANTS is the nunber of real data /2

R e R R

If absol ute val ues of spectrumare desired, then scaling up factor is 2*(N-1),

QCEF is twiddl e factor |ocation other than TF used i n conpl ex FFT (see si ncosr)

nove #PA NTS- 1, nO ;nunber of conpl ex FFT input data -1

nove #PA NTY 2-1, n2 ;1 oop count er

nove #CDATA, r 0 ;710 ptr to Ar=H

nove #QOCEF- PA NTS/ 2+1,r2 ;twiddl e factor start |ocation

nove r2,ré ;16 -> W

|l ea (r0)+n0, r5 ;r5 ptr to Br & Bi

nove #| DATA r3 ;r3 pointer for A

nove r3, rd

nove no, rl ;rl ptr for B, r1=B

nove #PA NTY 2, n0

nove nO, n5

nove nb, n8 ;8 and nil |inear address

nmove nd, nml

nmove #0, nD ;bit reverse address

nmove no, nb ;bit reverse address

nove x:(r0), b ; b=Ar0

nove x: (r5), x1 y:(r0),a ;a=Ai 0, x1=Br

add a,b x: (r1)+, x0 ; b=Ar 0O+Ai 0=DC, for ptr reason inc rl

subl b, a r3, r4 ;rd ptr to tenp location

asl b y:(rl),a ; a=somret hi ng

asl a b, x: (r3)+ y:(r5),b ; a=N qui st =Ar 0- Ai 0, save DC, b=Bi

nove a,y:(r0)+n0 ;save N g in y: CDATA tenp,

nove y:(r0),y0 ; YO=A

do n2, _end_split

add yO,b y0, a a, y:(rl)- ; b=Ai +Bi =H2r , a=Ai , save prev. Bi’

subl b, a x:(r0),b b,yl ;a=Al - Bi =Hli, b=Ar, yl=H2r

sub  x1,b x:(r0)+n0, a a,y: (r4) ; b=Ar - Br =H2i , a=Ar agai n,

;save Hli tenp, r0->nA

subl b, a x:(r2)+ x1 y: (r6)+,y0 ; a=Ar +Br =Hlr , x1=W, yO=W

mac x1,yl,a b,x0 a,y:(r5) ;a=HLr+W*H2r, x0=H2i , save Hlr tenp

macr yo0, x0, a y:(r5)-n5,b ca=HLr +W*H2r - W*H2i =Ar’, b=Hilr

subl a,b a, x:(r3) y:(r4),a ; b=HLr - (W*Hr - W*Hi ) =Br’ ,

; a=Hli , save Ar’

mac  -x1,x0,a b, x:(rl) y:(r5),b ;a=HLli - W*H2i , save Br’, b=nBi

Figure B-2 Real FFT for DSP56001/2 (sheet 4 of 5)
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macr yl,y0,a y:(r4),yo0 ; a=W*H2r - W*H2i +HLi =Ai *, yO=HLi
agai n

sub y0,a x:(r5), x1 a,y: (r3)+ ca=W*H2r-W*H2i, x1=nBr, save
A

sub y0,a y:(r0),y0 ; a=W*Her - W*Hi - HLi =Bi ’ , yO=nAi
_end_split

move YO0, a a,y: (rl) ;save last Bi’,conjugate |ast A

neg a #CDATA, 5

nove # DATA r0

nove a, y:(rd)

nove y:(r5),a

nove a,y:(r0) ;move N g. back

endm ;splith6

Figure B-2 Real FFT for DSP56001/2 (sheet 5 of 5)
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