Pascal-FC
Version 5
L anguage Reference Manual

G.L. Davies
University of Bradford, UK

0 G.L. Davies 1992. Permission to copy without fee all or part of this document is granted provided that the copies are not
made or distributed for direct commercial advantage.

Pascal-FC LRM

1. INTRODUCTION

1.1. Purpose of Pascal-FC

Pascal-FC® is a dialect of Pascal which has been designed specifically as a teaching tool.
Its purpose is to provide students with practical experience of concurrent programming.
In courses in this subject, it is usual to consider a variety of facilities for inter-process
communication. For example, Ben Ari2, in a widely-used text, considers semaphores,
monitors and the Ada rendezvous. For practical work, he provides a dialect of Pascal
which includes an implementation of semaphores, but which lacks monitors and the Ada
rendezvous. Pascal-FC, on the other hand, includes the following:

e semaphores;

* monitors;

e anoccam/CSP style rendezvous;
* anAdastylerendezvous;

« resources, which combine some of the features of Conditional Critical Regions’ and
monitors.

The aim of the system is to expose students to a variety of styles of inter-process
communication without the distraction of having to learn the syntax of several different
languages.

In addition to its concurrency facilities, the language also includes optional features
which enable it to be used for teaching the programming of real-time embedded systems
where suitable hardware is available. These optional features are concerned with the
timing of events, and with low-level programming, including interrupt-handling.

1.2. Historical Background

Pascal-FC is a mgor extension of Ben Ari’s concurrent Pascal-S. However, Ben Ari in
turn based his system on a purely sequential Pascal-S developed by Wirth (see Berry?).
Wirth's 'S’ language was a subset of standard Pascal, from which had been omitted a
number of features (for example, sets, files and dynamic data structures) found in
standard Pascal. The reader experienced in standard Pascal will find, therefore, that these
familiar features are not supported by Pascal-FC.

1.3. Scope of the Manual

Some of the features of the language are intended for real-time applications, and the
inclusion and restrictions imposed on such features are necessarily implementation-
dependent. This manual does not describe any specific implementation, so that only the
general form of such features is given here: information specific to particular
implementations will be provided in the User Guide for the implementation.

1.4. Syntax Notation

This Manual uses a notation similar to the one adopted in the Ada Language Reference
Manuall. Specifically, the syntax is described in a variant of Backus-Naur Form (BNF),

FC-LRM-1/1.1 -2-

Pascal-FC LRM

supplemented with ordinary English. Semantics are described in ordinary English.
The following conventions are adopted for the BNF notation.
* Eachruleisintroduced by the name of a syntactic category followed by "::=".

. Lower-case words, some of which contain underscore characters, are used to denote
syntactic categories. For example:

identifier
sel ect _st at enent
* Bold-face words are used to denote reserved words. For example:
begi n
process
* A character enclosed in double quotes stands for itself, and is not a syntactic
category or specia symbol. For example, in therule:
exponent _part ::=

["e"|"E"] [+|-] unsigned_integer
the characters"e" and "E" are not the names of syntactic categories.

e Sguare brackets enclose optional items, except when enclosed in double quotes,
when they stand for themselves. For example:

if _statenment ::=

I f boolean_expression then
st at enent
[el se
st at enment |

array_i ndex ::

"[" ordinal_expressi on{, ordinal_expression}"]"
The optional part is either absent, or one such part is permitted.

* Braces enclose repeated items, except when enclosed in double quotes, when they
stand for themselves. For example:

identifier ::=

letter{letter | digit}

comment ::=

comment _start {character} coment _end

FC-LRM-1/1.1 -3-

Pascal-FC LRM

comment _start ::=

IR G

comment _end :: =

L)
When braces enclose a repeated item, the item may be repeated zero or more times.
» Alternatives are separated by the "|" character, asin the above examples.
» |talics are used to convey some semantic information. For example:
boolean_expr essi on

Such information is provided as a hint to the reader: a context-free grammar is, of
course, not capable of representing the difference between, for example, a boolean
expression and an integer expression.

FC-LRM-1/1.1 -4-

Pascal-FC LRM

2. PROGRAM STRUCTURE, DECLARATIONS AND
STATEMENTS

The only compilation unit in Pascal-FC is the program. The next section describes the
overall form of a program and some of its components. later sections describe
declarations and statements.

2.1. Program
A program is defined afollows:
program ::=

program header

gl obal _decl arati on_part
begi n

mai n_st at ement _part
end.

program header ::=

programidentifier;

identifier ::=

letter{letter | digit}

Here, | et t er signifies the norma upper- and lower-case alphabetical characters, and
di gi t denotes the decimal digits. The case of alphabetical characters in identifiers is
not significant.

Certain forms of declaration are only permitted in a global declaration part: these
include monitor, resource and process declarations. The following syntax lists the
possible forms of declaration:

FC-LRM-2/1.1 -5-

Pascal-FC LRM

gl obal _decl aration_part ::=

{

constant _decl arati on

t ype_decl arati on

vari abl e_decl arati on

noni t or _decl arati on
resource_decl arati on
procedure_decl arati on
function_declaration
process_type_decl aration
process_obj ect decl aration

}

The main statement part is the only place where a concurrent statement may be placed,
and there may be at most one of these. The alowable forms of the main statement part
are;

mai n_statenent _part ::=

st at enent _sequence
[; concurrent _stat enment
[; st at enent _sequence]]
| concurrent _statenent
[; stat enent _sequence]

st at enent _sequence :: =

st at enent
{;statenent}

The concurrent statement and its use are described in Chapter 3.

2.2. Declarations

Monitor, resource, process and entry declarations are ignored here, as they are covered in
later chapters. The remaining forms are, for the most part, like those of Pascal, but with
some additions and restrictions. One such restriction is that there are no | abel
declarations. One sense in which Pascal-FC is less restrictive than Pascal is that the
order of different types of declaration is not fixed. Like Pascal, Pascal-FC is based on the
principle of declaration-before-use.

FC-LRM-2/1.1 -6-

2.2.1. Constant declarations

Pascal-FC LRM

Constants are declared by means of a const declaration, which has the following form:

constant _declaration ::=

const
identifier = constant;
{identifier = constant;}
where:
constant ::=

constant_i denti fier
| integer literal
| real literal
| character literal

Note that, unlike Pascal, there are no string constants.

2.2.1.1. Character literals
Asin Pascal, the syntax of a character litera is:
character literal ::=
' character’

The set of permissible charactersis not defined by the language.

2.2.1.2. Integer literals

There are two basic forms of integer literal: decimal and based.

number to be expressed in bases other than 10.
integer literal ::=

deci mal _i nt eger
| based_i nt eger

deci mal _i nt eger

[+] -] unsigned_integer

unsi gned_integer ::=

decimal_di gi t { decimal_di gi t}

FC-LRM-2/1.1 -7-

Based literals allow a

Pascal-FC LRM

based i nteger ::=

base#digit char act er { digit_char act er}

base ::=

unsi gned_i nt eger

NOTES

1. Thevaluefor the base of abased integer may be restricted by the implementation.

The interpretation of a based integer (for example, unsigned integer or two's
complement integer) is implementation-dependent.

3 The compiler will ensure that the digit characters used in a based integer are
appropriate for the value of base selected.

2.2.1.3. Real literals
Real literals have the same form asin Pascal.
real literal ::=
[+] -] unsigned_real
unsigned_real ::=
unsi gned_i nt eger exponent _part
| unsigned_integer fractional part [exponent_part]

exponent _part ::=

["e"|"E"] [+]|-] unsigned_integer

fractional _part ::=
. unsi gned_i nt eger

2.2.2. Type declarations
Asin Pascal, atype declaration has the form:
type declaration ::=

type
i dentifier
{identifier

type;

type;}

The alowable forms for atype are dightly different: Pascal-FC does not have subrange,
set or pointer types, but it does introduce an additional channel type.

FC-LRM-2/1.1 -8-

Pascal-FC LRM

type ::=

type i dentifier
enuneration_type
array_type
record_type
channel _type

Certain type identifiers are pre-defined (the so-called "standard types'). These, and the
operations defined on the standard types, are given in Appendix C.

Types fal into two categories. scalar and structured. The scalar types are
bool ean, char, i nteger and real . Of these, the first three are called "ordinal"
types. Channel type declarations will not be considered here: they are described in
Chapter 7.

2.2.2.1. Enumeration types

Enumeration types are like those of Pascal. The declaration of an enumeration type has
the form:

enuneration_type ::=

(identifier_list)
identifier_list ::=
identifier{,identifier}

NOTE

Each identifier must be unique in the current scope.

2.2.2.2. Array types
These have the form:
array_type ::=

array index_type{index_type} of type
I ndex_type ::=

“["ordinal_range{, ordinal_range}"]"

ordinal _range ::=

ordinal_const ant . . ordinal_const ant

FC-LRM-2/1.1 -9-

Pascal-FC LRM

2.2.2.3. Record types

Pascal-FC differs from Pascal in two ways. variant records are not allowed, and an
"offset indicator" may be given to fields.

record type ::=

record
field |list
end

field list ::=
field declaration {;field declaration}
field declaration ::=

identifier[offset _indicator]
{,identifier [offset _indicator]}

type

of fset indicator ::=

at of fset integer_const ant
The significance of the offset indicator is explained in Chapter 11.

2.2.3. Variabledeclarations

Variable declarations are smilar to Pascal, but with the addition of an optional "mapping
indicator".

vari abl e_declaration ::=

var
variable list : type;
{variable_list : type;}

variable list ::=

identifier [rmapping_indicator]
{,identifier [mapping_indicator]}

mappi ng_i ndicator ::=

at integer_const ant

The significance of the mapping indicator is described in Chapter 11.

FC-LRM-2/1.1 -10-

Pascal-FC LRM

2.2.4. Procedure and function declar ations

In Pascal-FC, there are three classes of subprogram: procedures, functions and processes.

The first two of these are known as "sequential subprograms’. Processes are considered
in Chapter 3.

Procedure and function declarations are largely as in Pascal. Forward declarations
are supported. However, there are no conformant array parameters, or parameters that
are themselves subprograms.

sequenti al _subprogram declaration ::=

full _sequential _subprogram decl arati on
| deferred_sequential subprogram decl aration

full _sequential _subprogram declaration ::=

sequenti al _subprogram header
[decl aration_part]
begi n
st at enent _sequence
end;

sequenti al _subprogram header ::=

procedur e_header
| function_header

procedure_header ::=

procedure identifier [formal part];

function_header ::=

function identifier [formal part]
type i dentifier;

formal _part ::=

([var] identifier_list : type identifier
{;[var] identifier_list : type identifier})

FC-LRM-2/1.1 -11-

decl aration_part ::=

{

constant _decl arati on
t ype_decl arati on

vari abl e_decl arati on
procedure_decl aration
function_declaration

}

def erred_sequenti al _subprogram decl arati on

procedur e _header forward; procedure_stub
| function_header forward; function_stub

procedure_stub ::=

procedure identifier;
[decl aration_part]
begi n
st at enent _sequence
end;

function_stub ::=

function identifier;
[decl aration_part]
begi n
st at enent _sequence
end;

NOTES

Pascal-FC LRM

When a deferred declaration is used, other declarations may separate the header

from the stub.

The type identifier in a function header declares the type of the returned result, and

it must be of ascalar type.

The result of a function is returned by an assignment statement in the enclosed
sequence of statements, in which the function name appears on the left of the

assignment operator.

If a function is exited without the execution of the above type of assignment, no

error need be signalled, but the returned result is undefined.

var parameters ("variable parameters') are passed by reference. Other parameters

are called "value parameters’, and are passed by value.

FC-LRM-2/1.1 -12-

2.3. Statements
The allowable statements in Pascal-FC are described by the following syntax.

statenent ::=

assi gnnment _st at enent
procedure_cal
for_statenent
repeat _st at enent

whi | e_st at enent

i f_statement
case_st at enent
conmpound_st at enent
enpty_st at enent
concurrent _stat enent
process_activation
noni t or _cal

channel operation
sel ect _st at enent
entry cal
accept _st at enent
resource_cal
requeue_st at enent
nul | _st at ement

Pascal-FC LRM

Assignment statements, procedure calls, the empty statement, the compound statement
and i f and case statements have the same form as in Pascal. The loops are also
similar, except that the f or statement has no downt o variant, and the repeat
statement is slightly extended.

Many of the above statements are concerned with the concurrency features of
Pascal-FC. They will not be described here, but in the appropriate later chapters.

2.3.1. Theassignment statement

This has the same form as in Pascal:

assi gnnment _st at enent

vari abl e : = expression

variable ::=

variable i dentifier{sel ector}

FC-LRM-2/1.1

-13-

Pascal-FC LRM

selector ::=

array_subscri pt
| field selector

array_subscript ::=

"[" ordinal_expressi on{, ordinal_expression}"]"
expression ::=
si npl e_expression {rel _op sinple_expression}

rel _op ::=

< | <= > >=| | <>] in

si npl e_expressi on

[+] -] term {add _op ternt
add op ::=

+ | - | or

term ::=

factor {nmul _op factor}

mul _op ::=

*| / | div]| nod | and

factor ::=

unsi gned_i nt eger

based i nt eger

unsi gned_r eal

constant_i denti fier

vari abl e

function_identifier [(actual paraneters)]
not factor

bitset literal

(expression)

FC-LRM-2/1.1 -14 -

Pascal-FC LRM

actual paraneters ::=

expression {, expression}

bitset literal ::=

e

| "["integer_expression{, integer_expression}"]"

field selector ::=

. record field i denti fi er

Pascal-FC is strongly typed, so that the types of the two operands of the assignment
operator (":=") must be equivalent.

2.3.2. The case statement
The case statement isthe same asin Pascal. Itssyntax is:
case_statement ::=

case ordinal_expressi on of
case_alternative
{;case_alternative}
end

case alternative ::=

case_| abel {, case_| abel }: st at enent

case |l abel ::=

ordinal_const ant

NOTES

1. The expression following the reserved word, case (known as the "selector
expression™), and the case labels must have equivalent types.

2. Itisacompile-time error to have the same value of case label appearing more than
onceinasingle case statement.

3. Itisarun-time error if the value of the selector expression does not equal any of the
case labels.

4. At run time the statement which has a label equal to the selector expression will be
executed (if thereis one) and the case statement will then be exited.

FC-LRM-2/1.1 -15-

Pascal-FC LRM

2.3.3. The compound statement
Asin Pascal, the compound statement has the form:

COI'T‘pOUI’]d_St at enent L=

begi n
st at enent _sequence
end

2.3.4. The empty statement

This is included for consistency with Pascal, but it is recommended that the nul |
statement be used as a more readable aternative.

enpty_statenent ::=

{ white_space char acter}

2.3.5. Thefor statement

Thisisadlightly restricted version of the f or statement found in Pascal, in that thereis
no downt o variant. The syntax is:

for_statenent ::=

for variable := expression to expression do
st at enent

NOTES

1. Thevariable (known as "the loop control variable") and the two expressions (known
respectively as "the initial value" and "the terminal value') must be equivalent
ordinal types.

2. Thevalue of the loop control variable is undefined on exit from the loop.

3. If theinitial valueis greater than the terminal value, no iterations are performed and
theloop isimmediately exited.

4. If the initial value is less than or equal to the termina value, the number of
iterationswillbe 1 + (term nal value - initial value).

5. The number of iterations cannot be modified by making an assignment to the loop

control variable in the nested statement.

2.3.6. Theif statement
Asin Pascdl, the i f statement has the form:

FC-LRM-2/1.1 -16-

Pascal-FC LRM

if _statement ::=

i f boolean _expression then
st at enent
[el se
st at enent |

2.3.7. Procedure call
Asin Pascdl, this has the form:
procedure_call ::=

procedure i dentifier [(actual _paraneters)]

The expressions in the actual parameters must agree in number, type and mode with the
formal part of the procedure declaration.

2.3.8. Thenull statement
The null statement has the form:
nul | _statenent ::=

nul |

The execution of a nul | statement has no effect, and it may be used instead of the
empty statement for enhanced readability.

2.3.9. Therepeat statement
Compared with Pascal, the r epeat statement is augmented to be:
repeat _statenment ::=

r epeat

st at ement _sequence
repeat _|imt

repeat _|limt ::=

until boolean_expressi on
| forever

2.3.10. Thewhile statement
Asin Pascdl, this has the form:

FC-LRM-2/1.1 -17 -

Pascal-FC LRM

whi | e_st at enent

whi | e boolean_expr essi on do
st at enent

2.4. Comments
Comments in a Pascal-FC progrm have the form:
coment ::=

coment _start {character} comrent_end

coment _start ::=
ll{ll | (*
coment _end :: =
ll}ll | *)
NOTE

Comments must not be nested.

FC-LRM-2/1.1 -18-

Pascal-FC LRM

3. PROCESSES

Pascal-FC has a "flat" process structure in that processes may only be declared at the
outermost lexical level. The declaration of a process is not sufficient to bring it into
execution: process activation is required to achieve this.

3.1. Process States

The process state model of Pascal-FC is comparatively simple. It isillustrated in Figure
3.1

destroyed

@ non-existing
mé

terminated

termstate

Figure 3.1: Process States and Transitions

NOTES
1. A processis"created" by aprocess object declaration.

2. A processis made "executable" by a process activation.
3. A process becomes "terminated” when it has finished its execution.
4

When all processes have become "terminated', they are al "destroyed"
simultaneously.

5. A process that is "delayed" is one that is non-executable for a bounded time (see
Chapter 10).

6. A "suspended' process is one whose non-executable period is not necessarily
bounded. It is suspended on some inter-process communication primitive and is
dependent on some other process to make it executable again (see Chapters 4 - 9).

7. A process that is "awaiting interrupt” is blocked on a semaphore, channel or entry
that has been mapped to a source of interrupts (see Chapter 11).

FC-LRM-3/1.1 -19-

Pascal-FC LRM

8. For an explanation of "termstate”, see Chapter 9.

9. Theterm "blocked" will sometimes be used to refer to a process in any of the states
"awaiting interrupt”, "suspended”, "delayed" or "termstate”.

3.2. Process Declarations
Process declarations are either process object declarations or process type declarations.

3.2.1. Process Type Declarations
process_type_declaration ::=

[process_type_provi des_decl arati on]
process_type_body _decl arati on

process_type_provides_declaration ::=

process type identifier[formal part] provides
entry_decl aration
{entry_decl arati on}
end;

process_type_body declaration ::=

process type identifier[formal part];
{entry_decl arati on}
[decl aration_part]
begi n
st at enent _sequence
end;

Entry declarations will be described in Chapter 8.

Where the optional "provides’ declaration is used, the following points should be
noted:

1. There must be a corresponding body declared later in the same declaration part.
2. Thesetwo components may be separated by other declarations.

3. Thetwo parts must correspond exactly in their formal parts.
4

The number of entries, their identifiers and the formal parts of the entries, must
match exactly.

5. Theorder of declaration of the entriesis not constrained to be the same.

The declaration of a process type does not bring into existence any objects of that
type, but instead introduces a type identifier which may be used in type and variable
declarations. Process types can be elements of arrays, but not of records. The formal
parameters of a process have the same form as the formal parameters of procedures and
functions.

FC-LRM-3/1.1 -20-

Pascal-FC LRM

formal _part ::=

([var] identifier list : type identifier
{;[var] identifier list : type identifier})

There are certain restrictions on the types of formal parameters. Process type identifiers
are not permitted, and identifiers of types containing semaphores, conditions or channels
must be var parameters.

3.2.2. Process Object Declarations

A process object declaration brings into existence an executable instance of a process
type (anonymous or named). It introduces an identifier which may then be used in a
process activation. In terms of Figure 3.1, declaration of a process object causes the
process to make the transition from "non-existing” to "created".

process_obj ect declaration ::=

anonynous_process_type _decl aration
| process_vari abl e _decl aration

anonynous_process_type declaration ::=

[provi des_decl arati on]
process_body_ decl aration

The forms of the "provides' and "body" declarations are the same as those described in
the previous section, except that t ype is omitted. Restrictions are also the same. A
process variable declaration may only appear in a var declaration in a globa
declaration part, and has the following form:

process_vari abl e _declaration ::=

identifier _list : process type;

process type ::=

process i dentifier
| process array_type

3.3. Process Activation

A process object declaration brings into existence an instance of a process type, but it
does not automatically make it executable: a process activation is required. In terms of
Figure 3.1, the activation of a process causes it to make the transition from "created” to
"executable”.

FC-LRM-3/1.1 -21-

Pascal-FC LRM

process_activation ::=
process object i dentifier[array_index][(actual paraneters)]
A process activation can only be placed in a concurrent statement.

3.3.1. Theconcurrent statement
A concurrent statement has the form:

concurrent _stat enent

cobegin
st at enent _sequence
coend

NOTES

1. Although arbitrary statements may be placed in a concurrent statement, only
processes are executed concurrently.

2. Within the concurrent statement, any particular process may only be activated once.
3. Thelanguage prescribes no particular scheduling policy for processes.

4. No process will begin its execution before all processes activated in the concurrent
statement have been made executable.

5. The concurrent statement cannot terminate until all activated processes have
terminated.

6. If any process encounters a fatal error during its execution, the entire program is
aborted.

3.3.2. Activating elements of an array of processes
Given the following declarations:

process type proc;
(* declarations *)
begi n
(* statenents *)
end;

var
p: array[l..max]of proc;

One method of activating the elements of the array would be:

FC-LRM-3/1.1 -22-

Pascal-FC LRM

cobegi n
p[1];
p[2] ;
p[3];
p[4];
p[5]

coend

This quickly becomes tedious, however, and Pascal-FC allows a f or loop to be used as
a shorthand notation. Given a suitable declaration for the loop control variable, the above
could more succinctly be expressed as:

cobegin
for i :=1 to nmax do
pli]
coend

The repeat and whi | e loops can aso be used for the same purpose.

3.4. Phases of Execution of a Pascal-FC Program
In general, there will be four distinct phases in the execution of a Pascal-FC program:

1. A preliminary sequential phase, which will usually be used to prepare the execution
environment for concurrent processes (for example, by the initialisation of global
variables). Thisisthe set of statements beforethe cobegi n.

2. A process activation phase, during which the concurrent processes themselves are
prepared for execution (that is, they make the transition from "created" to
"executable").

3. Concurrent execution of processes.

4, A sequential completion phase , which begins only when the last concurrent
process has terminated. This corresponds with the statements following the
coend.

3.5. Process Scheduling and Priority

The order of activation of processes within the concurrent statement is not significant,
and the language does not specify any particular scheduling policy. However, a standard
procedure, priority,isprovided. A cal hastheform:

priority(p)

where p is an integer expression. The procedure sets the priority of the current process
to the indicated value. The procedure may be called from any part of a program.

NOTES
1. Animplementation isfreeto treat this procedureasa nul | statement.
2. Therange of the argument may be constrained by an implementation.

FC-LRM-3/1.1 -23-

Pascal-FC LRM

3. Theinterpretation of the argument is implementation-dependent.

4. An implementation may assign default priorities to processes and the main
statement part.

3.6. An Example: Multiple Update of a Shared Variable

The following program illustrates the declaration and activation of concurrent processes
and the use of the initial and completion phases of the main program statement part. It
also illustrates the problem of concurrent update of a shared variable: depending on the
process scheduler in use, the output value may display variation.

program gar densl
(* Multiple Update *)

var
count: integer;

process turnstilel;

var
| oop: i nteger;
begi n
for loop := 1 to 20 do
count := count + 1

end; (* turnstilel *)

process turnstil e2;

var
| oop: i nteger;
begi n
for loop := 1 to 20 do
count := count + 1

end; (* turnstile2 *)

begi n
count := 0;
cobegin
turnstilel;
turnstile2
coend;
witeln(’ Total admtted: ', count)
end.

FC-LRM-3/1.1 -24-

Pascal-FC LRM

3.7. Deadlock
The definition of "deadlock” in Pascal-FC is:

Deadlock is a state in which no process is executable, and at least one process is
"suspended”.

MOTES

1. Animplementation must abort the program if a state of deadlock occurs during its
execution.

2. A program cannot deadlock aslong as at least one process is "awaiting interrupt”.
3. A program cannot deadlock aslong as at least one processis "delayed”.

FC-LRM-3/1.1 -25-

Pascal-FC LRM

4. SEMAPHORES

In this chapter, it is assumed that the reader is familiar with the concept of semaphores?.
See, for example, Ben Ari2 3 for an introduction.

4.1. Declaration

Semaphore objects are introduced in var declarations. A standard type, senaphor e,
isincluded. Semaphores may be declared singly, or as components in arrays or records
(types or variables).

NOTES

1. Semaphores, or objects containing them, may only be declared in a global
declaration part.

2. Semaphore objects may be passed as parameters to subprograms, but the
corresponding formal parameters must be var parameters.

3. Semaphores are guaranteed to have no processes blocked on them initially, but the
value is undefined until the semaphore has been passed to the i ni ti al procedure.

4.2. Operationson Semaphores

The allowable operations on semaphores are restricted to:

e The wait and si gnal procedures,

» the initial procedure;

e the wite(ln) procedure.

Eachof wait and si gnal takesasingle parameter, which must be a semaphore.

42.1. The initial procedure

A call tothe i ni ti al procedure hasthe form:
initial (s,v)

where s isasemaphoreand V isan integer expression.

NOTES

1. An implementation must not permit the execution of initial when v isless
than zero.

2. Only the main program thread must be allowed to execute this procedure. Such a
call can appear in the main statement part, or in the statement part of a subprogram
called by the main program. (The implementation must not permit a process to
execute i ni tial by calling such asubprogram).

4.2.2. The wait procedure
A call to this procedure has the form:

FC-LRM-4/1.1 -26-

Pascal-FC LRM

wai t (s)

where s isasemaphore.
NOTE

If the semaphore value is O at the time of execution, the calling process becomes
"suspended" if the semaphore is not mapped to a source of interrupts (see Chapter 11) or
enters the state "awaiting interrupt” if it is so mapped.

4.2.3. The si gnal procedure

A call to this procedure has the form:
si gnal (s)

where s isasemaphore.

NOTE

The language does not prescribe any particular queuing discipline on semaphores. if a
si gnal is carried out on a semaphore on which several processes are currently
"suspended"”, one of them will be allowed to proceed, but the decision as to which is
arbitrary.

4.3. An Example: Multiple Update

Chapter 3 introduced a program that displayed the problem of concurrent update of a
shared variable. The following program uses one semaphore to enforce mutually
exclusive access to the variable. The final value in this case is aways 40, regardless of
the scheduler in use.

program gar dens2;
(* Senmaphore solution to nultiple update *)
var

count: integer;
nmut ex: semaphore;

FC-LRM-4/1.1 -27-

process turnstilel;

var
| oop: integer;
begi n
for loop := 1 to 20 do
begi n
wai t (mut ex) ;
count := count + 1;
si gnal (mut ex)
end
end; (* turnstilel *)

process turnstil e2;

var
| oop: integer;
begi n
for loop := 1 to 20 do
begi n
wai t (mut ex) ;
count := count + 1;
si gnal (mut ex)
end
end; (* turnstile2 *)
begi n
count := 0;
initial (mutex, 1);
cobegin
turnstilel;
turnstile2
coend;
witeln(’ Total adnmitted:
end.

4.4. Process Statesand Transitions

This section summarises the effects on process state of the features described in this
chapter.

A process executing a wai t at atime when the named semaphore is zero becomes
"suspended"” if the semaphore is not mapped to a source of interrupts, or "awaiting

1.

FC-LRM-4/1.1 -28-

interrupt” if it is so mapped.

Pascal-FC LRM

', count)

A process suspended on a semaphore can be made executable by a si gnal
operation on the semaphore or (in the case of a semaphore mapped to a source of

Pascal-FC LRM

interupts) by the occurrence of an appropriate interrupt.

FC-LRM-4/1.1 -29-

Pascal-FC LRM

5. MONITORS

Pascal-FC's implementation of monitors follows closely the suggestions made by
Hoare®. The only operations that are exported from monitors are procedures. thec
ompiler guarantees mutually exclusive access to monitors, and condition synchronisation
isdone by meansof condi ti on variables, which are also described in this chapter.

5.1. Declaration

A monitor is one of the forms of declaration that are permitted only in a global
declaration part. It has the following form:

noni tor _declaration ::=

moni tor identifier;
export _|ist
[decl aration_part]
[moni t or _body]
end;

export_list ::=

export procedure identifier_list;
{export procedure i dentifier_list;}

nonitor_body ::=

begi n
st at enent _sequence

NOTES

1. Certain instances of type and variable declaration are not permitted in a monitor:
specifically, those involving processes, semaphores and channels (types or
variables).

2. The only declarations in a monitor that are visible from outside that monitor are
procedures whose identifiers appear in the export list (these are called "exported
procedures’).

3. It is a compile-time error for such an identifier not to have a corresponding
procedure declared in the monitor.

4. Exported procedures may not be nested within subprogram declarations.

5. The body of amonitor, if present, is executed once, before the first statement of the
main statement part.

6. If there are several monitors declared in a program, the order in which their bodies
are executed is not defined by the language.

FC-LRM-5/1.2 -30-

Pascal-FC LRM

7. Code within a monitor is guaranteed to be executed under mutual exclusion. A
boundary queue is used to block processes wishing to gain access to a monitor
already occupied by a process.

8. Theboundary queueis defined to be a priority queue: within a given priority value,
a FIFO discipline is used. The queuing scheme hence degenerates to plain FIFO in
an implementation in which process priorities are not discriminated.

5.2. Callsto monitors

A monitor call is a call to an exported procedure of a monitor. In general, it takes the
form:

nmonitor_call ::=

monitor_i dent i fi er. exported procedure i dentifier
[(actual _paraneters)]

If the called procedure is declared within the same monitor as the call, a shorter form
may be used as an alternative:
exported procedure i dentifi er[(actual paraneters)]

This is semantically equivalent to the longer form. In particular, there is no attempt in
either case to gain mutually exclusive access, since the calling process must already have
such access.

Nested monitor calls are permitted: in this case, mutual exclusion on the monitor
from which the call is made is retained.

5.3. Condition Variables

5.3.1. Declaration

Condition objects are introduced by var declarations. The standard type,
condi tion, is provided. Condition variables may be declared, but there are no
constants of thistype. Conditions may be declared as smple variables, or as components
of arrays or records (types or variables).

NOTES

1. Typedeclarations involving this type may be made in a global declaration part or in
the declaration part of a monitor.

2. Declarations of variables involving this type may only be made in the declaration
part of amonitor.

3. Conditions declared as formal parameters to subprograms must be var parameters.

4. Conditions are defined to be priority queues. Within a given priority value, a FIFO
discipline is used. Hence, conditions degenerate to FIFO queues in
implementations which do not discriminate process priority.

FC-LRM-5/1.2 -31-

Pascal-FC LRM

5. Conditions are guaranteed to be initialised to the empty queue on declaration.

5.3.2. Operations on conditions

The operations on conditions are restricted to:
e the del ay and r esun®e procedures;
* the enpty function.

5.3.2.1. The del ay procedure
A call to this procedure has the form:
del ay(c)

where c is acondition. The calling process becomes "suspended” and releases mutual
exclusion on the monitor.

5.3.2.2. The resune procedure
A call to this procedure has the form:
resume(c)

where c isacondition.
NOTES

1. If there are no processes currently suspended on c, the call has the same effect as a
nul | statement.

2. If a resune operation unsuspends a process, the unsuspended process inherits
mutual exclusion on the monitor. The process that called resune joins the
chivalry queue associated with that monitor (there is one such queue per monitor).
The queuing discipline on such a queue is the same as for the boundary queue.

3. Processes suspended on a chivalry queue have preference over any waiting on the
same monitor’s boundary queue when mutual exclusion of that monitor is released
by another process.

5.3.2.3. The enpty function

This is a bool ean function. The single parameter must be a condi ti on. The
function returns true if there are no processes currently suspended on the named
condition.

5.4. An Example: the Bounded Buffer

The following program illustrates the declaration and use of monitors and condition
variables. It shows the communication of a producer and a consumer via a bounded
buffer.

FC-LRM-5/1.2 -32-

Pascal-FC LRM

program PCON4,;

(* producer-consuner problem - nonitor solution *)

noni t or BUFFER

export
PUT, TAKE;

const
BUFFMAX = 4;

var
STORE: array[0..BUFFMAX] of char;
COUNT: i nt eger;
NOTFULL, NOTEMPTY: condition;
NEXTI N, NEXTQUT: i nteger;

procedure PUT(CH char);

begi n
i f COUNT > BUFFMAX t hen
del ay(NOTFULL) ;
STORE[NEXTIN] := CH;
COUNT : = COUNT + 1;
NEXTIN := (NEXTIN + 1) nod (BUFFMAX + 1);
r esune(NOTEMPTY)
end; (* PUT *)

procedure TAKE(var CH: char);

begi n
if COUNT = 0 then
del ay(NOTEMPTY) ;
CH : = STORE[NEXTOUT] ;
COUNT : = COUNT - 1;
NEXTOUT : = (NEXTOUT + 1) nod (BUFFMAX + 1);
resunme(NOTFULL)
end; (* TAKE *)

begin (* body of BUFFER *)
COUNT := 0
NEXTI N : =
NEXTOUT := 0
end; (* BUFFER *)

FC-LRM-5/1.2 -33-

Pascal-FC LRM

process PRODUCER;

var
LOCAL: char;

begi n
for LOCAL :='a to 'z' do
BUFFER. PUT(LOCAL) ;
end; (* PRODUCER *)

process CONSUMER;

var
CH char;
begi n
repeat
BUFFER. TAKE(CH) ;
write(CH)
until CH="2z";
witeln

end; (* CONSUMER *)
begin (* main *)
cobegi n
PRODUCER,
CONSUMER

coend
end.

5.5. Process States and Monitors

This section summarises the effects on process state of the features described in this
chapter.

1. A process that attempts to enter a monitor that is already occupied becomes
"suspended” on the monitor boundary queue.

2. A processthat executesa del ay becomes "suspended” on the named condition.

3. A process that executes a r esune that has the effect of unsuspending a process
becomes "suspended” on the monitor chivalry queue.

4. A process suspended on a condition can be made "executable' by the resune
operation.

5. A process suspended on a monitor boundary queue can be made executable by a
process leaving the monitor.

FC-LRM-5/1.2 -34-

Pascal-FC LRM

6. A process suspended on a chivalry queue can be made executable by a process
leaving the monitor.

6. When a process leaves a monitor and other processes are blocked on both the
boundary and the chivalry queues, the latter queue has priority.

FC-LRM-5/1.2 -35-

Pascal-FC LRM

6. RESOURCES

Resources in Pascal-FC provide some of the features of the protected record of
Ada 9X°. Resources are similar to monitors in that they provide compiler-guaranteed
mutual exclusion of access to enclosed data, but condition synchronisation is effected by
barrierson procedures, rather than by condition variables.

6.1. Declaration

The rules concerning the place of declaration of resources are the same as those for
monitors. in particular, aresource may only be declared in aglobal declaration part. The
syntax of aresource declaration is as follows:

resource_declaration ::=

resource identifier;
export _|ist
resour ce_decl aration_part
[resour ce_body]
end;

resource_declaration_part ::=

{

const ant _decl arati on
type_decl arati on

vari abl e_decl arati on
procedure_decl aration
function_decl aration

guar ded_pr ocedure_decl arati on

}

guar ded_procedure_decl aration ::=

full _guarded_procedure_decl arati on
| deferred_guarded_procedure_decl aration

full _guarded_procedure_declaration ::=

guarded procedure identifier[formal _part]
when boolean_expr essi on;
[decl aration_part]
begi n
st at ement _sequence
end;

FC-LRM-6/1.2 -36-

Pascal-FC LRM

def erred_guarded_procedure_declaration ::=

forward_guarded_procedur e_header
guar ded_pr ocedur e_body

forward_guarded_procedure_header ::=

guarded procedure identifier[formal part]
when boolean _expr essi on; f orwar d;

guar ded_procedure_body ::=

guarded procedure identifier;
[decl aration_part]
begi n
st at enent _sequence
end;

resource_body ::=

begi n
st at enent _sequence

NOTES

1. Resources may only be declared in agloba declaration part.
Only identifiers that appear in the export list are in scope from outside the resource.

3. The identifiers in the export list must be the names of procedures or guarded
procedures declared inside the resource.

4. Exported procedures must not be nested within other subprograms declared in the
resource.

5. Guarded procedures, whether exported or not, must not be nested inside other
subprograms.

6. Theformal parameters of a guarded procedure are not in scope until after the guard
expression.

7. Type and variable declarations involving semaphores, channels and processes are
not permitted anywhere in aresource.

8. Where a deferred guarded procedure declaration is used, the header and the body
may be separated by other declarations.

FC-LRM-6/1.2 -37-

Pascal-FC LRM

6.2. Callstoresources

A call to aresource is a call to an exported procedure (guarded or otherwise) of that
resource. It hasthe form:

resource_call ::=

resource i dentifier.
exported procedure i dentifi er[(actual paraneters)]

As with monitors, if the procedure concerned is declared within the current resource, a
shortened notation (consisting simply of the procedure identifier and the actual
parameters) is permitted. This is semantically equivalent to the longer version given
above.

If a guarded procedure is called whose guard evaluates to false, the calling process
becomes "suspended” and leaves the resource. Any process leaving a resource must
attempt to find a candidate which will inherit mutual exclusion on the resource. The
candidate will be selected from among those suspended on guards which now evaluate to
true. No particular queuing discipline is specified for guards, and the choice among the
procedures with open guards is arbitrary. Processes |eave resources when they complete
an execution path through an exported procedure, when they become blocked on a guard
in that resource, or when they requeue to a different resource (whether or not they block
on aguard).

Nested calls from one resource to an exported procedure of another are permitted.
In such a case, mutual exclusion on the current resource is retained.

NOTE
A call to aguarded procedure is not permitted anywhere inside a resource.

6.3. Therequeue statement

The r equeue is used to abandon the current guarded procedure and transfer the call to
another, either within the current resource, or within another. Its syntax is:

requeue_statenent ::=

requeue [resource identifier.]
guarded_procedure_i denti fi er[(actual _paraneters)]

The optional identifier, if present, must be the name of aresource. If it isthe name of the
resource enclosing the r equeue statement, it has no effect. The second identifier in the
above syntax must be the name of a guar ded procedur e. If the associated guard is
open, the procedure is executed as normal. If the guard is closed, the calling process
must become "suspended’ (and leave the resource), but it must attempt to find a
candidate for awakening.

Control does not eventually return to the statement following a requeue
statement: its execution causes the abandonment of the current guarded procedure.

FC-LRM-6/1.2 -38-

Pascal-FC LRM

NOTES

1. A requeue statement may only be used in athe statement part of a guar ded
pr ocedur e (ie, not within a subprogram nested within such a procedure).

2. Thedestination of a r equeue must be a guarded procedure.

3. Intheevent that a r equeue is made to a guarded procedure of another resource,
mutual exclusion on the current resource is released, as a return will not be made to
it.

6.4. An Example: the Alarm Clock

The following is a resource-based version of Hoare’' s alarm clock example. A number
of sleeper processes wish to slumber for various periods. Each time that the clock ticks,
sleepers awake and check to see whether it istimeto get up. If not, they go back to sleep.
The exampleillustrates the use of the r equeue statement.

progr am ALARMCLOCK;
const
PMAX = 3;

resource ALARM
export
SLUMBER, TI CK;

var
NOW i nt eger;
gueue : integer; (* takes values 1 or 2 *)

freedl, freed2 : bool ean;
guarded procedure SLUVBER2(AL: integer) when freed2; forward,

guarded procedure SLUMBERL(AL: integer) when freedl,
begi n
if NOW< AL then
requeue SLUVBER2(AL)
end; (* SLUMBER *)

guar ded procedure SLUVBERZ;
begi n
if NOW< AL then
requeue SLUVBERL(AL)
end; (* SLUMBER *)

FC-LRM-6/1.2 -39-

Pascal-FC LRM

guarded procedure SLUVBER(N:. integer) when true;
var
ALARMCALL: i nteger;
begi n
ALARMCALL := NOW + N;
i f NOW< ALARMCALL then
if queue = 1 then
requeue SLUVBERL(ALARMCALL)
el se
requeue SLUVBER2(ALARMCALL)
end; (* SLUMBER *)

procedure TICK;
begi n
NOW : = NOW + 1,
if queue = 1 then
begi n
gueue :
freedl :
freed2 :
end el se
begi n
queue : = 1,
freedl :
freed2 :
end
end; (* TICK *)

begin (* body *)
NOW : = 0O;
queue : = 1,
freedl : = fal se

end; (* ALARM *)

resour ce SCREEN;
export
PRI NT;

I
»

I o

procedure PRI NT(N:. integer);
begi n
witeln(’Process ', N 1,’ awakes’)
end; (* PRINT *)
end; (* SCREEN *)

FC-LRM-6/1.2 -40 -

process DRI VER
(* provides the clock "ticks" *)
begi n
repeat
sl eep(1);
ALARM TI CK
forever
end; (* DRIVER *)

process type SLEEPERTYPE(N:. i nteger);
begi n
r epeat
ALARM SLUMBER(n) ;
SCREEN. PRI NT(N)
(* get up and go to work *)
forever
end; (* SLEEPERTYPE *)

var

SLEEPERS: array[1..PVMAX] of SLEEPERTYPE;

PLOOP: i nteger;

begi n
cobegi n
DRI VER;

for PLOOP := 1 to PMAX do
SLEEPERS| PLOOP] (PLOOP)
coend
end.

6.5. Process Statesand Transitions

This section summarises the effects on process states of the features described in this
chapter.

A process that attempts to enter a resource that is already occupied becomes

1.

2.

"suspended"” at the resource boundary.

Pascal-FC LRM

A process that cals a guarded procedure whose guard expression evaluates to

f al se becomes "suspended” on the barrier of that procedure.

A process suspended on a procedure barrier may become executable when a process

leaves the resource and the guard expression evaluatesto t r ue.

A process suspended on a resource boundary may become executable when a
process leaves the resource and there is no process suspended on a guarded

procedure of the resource whose guard evaluatesto t r ue

FC-LRM-6/1.2 -41-

Pascal-FC LRM

7. RENDEZVOUSBY CHANNEL

Semaphores, monitors and resources provide forms of inter-process communication
based on shared memory. An aternative model for such communications is based on
message-passing. Pascal-FC includes two forms of message-passing protocol. In both
cases, communicating processes take part in arendezvous. The essence of a rendezvous
isthat the process which arrives first is suspended until the other party arrives. When the
rendezvous is compl ete, the processes resume their separate execution.

In this chapter, we introduce the first of these schemes, which is similar to the
model used in the language, occam 210. In this scheme, messages are sent between
processes by means of channels.

7.1. Channds

A channel is the intermediary for a rendezvous between one sender and one receiver.
Channels are strongly typed: the declaration of a channel variable or channel type
specifies a base type, and only data of this type may be sent or received via such a
channel. The base type of a channel may be any of the types allowed in Pascal-FC
(including structured types). The effects of sending and receiving channels, processes,
semaphores and conditions are not defined by the language.

7.1.1. Declaration and use of channels

Channel objects are introduced by var declarations. A specia form of type declaration
has been introduced for this purpose, whose syntax is as follows:

channel _type ::=

channel of type

NOTES

1. Channel types and objects can only be declared in aglobal declaration part.

2. Channel objects may be passed as parameters to subprograms, but they must have
been formally declared as var parameters.

7.1.1.1. Examples
Typical declarations involving channel types and objects are:

FC-LRM-7/1.1 -42 -

Pascal-FC LRM

type
chan = channel of integer;
buffer = array [1..buffersize] of char;
i nk = channel of buffer;

var
chl, ch2: chan;
coms: array [1..10] of I|ink;

7.1.2. Operationson channels
Two channel operations, send and receive, are defined. The syntax is as follows:
channel _operation ::=

send | receive

send ::=

channel_variable ! expression

receive ::=

channel_variable ? wvariable

NOTES

1. Channels are strongly typed. In both send and receive operations, the right-hand
operand must have an equivalent type to the base type for the left-hand operand.

2. The effects of sending and receiving processes, semaphores, conditions and
channels are not defined.

3. Itisarun-time error to have multiple senders or multiple receivers concurrently
active on agiven channel.

7.2. Thetype synchr onous

For synchronisation-only communication, where it is not required to pass data from one
process to another, a data type, synchr onous has been introduced. This identifier
may be used in type and object declarations. A pre-defined variable, any, is aso
implicitly declared in every Pascal-FC program.

Objects of this type have no values associated with them. The only allowable
operations are the two channel operations. These are defined to have no effects on their
synchr onous operands. Hence, although the programmer can declare variables of this
type, it is unnecessary to do so, as any can be used on the right-hand side of al channel
operationsinvolving synchr onous channels.

FC-LRM-7/1.1 -43-

7.3. An Example: Unbuffered Producer-Consumer

Pascal-FC LRM

Because the send and receive operations effect a rendezvous, simple process
synchronisation is straightforward. In the following program, a producer generates

characters which are then consumed by a second process.
program proconl

var |ink: channel of char;

process producer;

var |l ocal: char

begi n
r epeat
(* generate character *)
link ! |ocal
forever

end; (* producer *)

process consuner,

var local: char

begi n
repeat
link ? |ocal;
(* consune character *)
forever

end; (* consuner *)

begin (* main *)
cobegin
producer;
consuner
coend
end.

7.4. Process Statesand Transitions

This section summarises the effects on process states of the features described in this

chapter.

1. A process that attempts a send or receive operation on a channel on which there is
no pending call becomes "suspended” if the channel is not mapped to a source of

FC-LRM-7/1.1 -44 -

Pascal-FC LRM

interrupts (see Chapter 11) and "awaiting interrupt” if it is so mapped.

2. A process blocked on a channel may become executable when another process has
carried out the complementary channel operation on the channel or (in the case of a
channel mapped to a source of interrupts) when an appropriate interrupt occurs.

FC-LRM-7/1.1 -45-

Pascal-FC LRM

8. ADA-STYLE RENDEZVOUS

A subset of the Ada inter-process communication facilities has been implemented in
Pascal-FC. These include the provision of entries (but not entry families), entry calls
(not conditional or timed) and accept statements. These features provide for a basic
Adastyle rendezvous. A selective waiting construct is also provided, but this is
described in Chapter 9.

8.1. ProcessEntries
The syntax of an entry declaration is as follows:
entry declaration ::=

entry identifier [formal _part] [mapping_indicator];

The formal parameters have the same form as for a subprogram and may, therefore,
include value and var parameters. Whereas value parameters can only be used to pass
information into the called process, var parameters may be used to pass information
either way.

The significance of the mapping indicator will be considered in Chapter 11.
NOTE

An arbitrary number of processes may at any time be suspended on an entry. The
language does not define any particular queuing discipline on entries.

8.2. The accept statement
Theform of the accept statement is:
accept _statenent ::=

accept entry identifier [formal part] do
st at enent

NOTES

1. An accept statement may only be placed in the statement part of a process (ie,
not within a subprogram nested in a process).

2. The formal part must correspond exactly with the one given for that entry in the
entry declaration: the number, type and mode of the parameters, and their
identifiers, must match.

3. An accept statement opens a new scope in the same way as a subprogram, and
the formal parameters are only visible within the enclosed statement.

4. An accept statement for an entry E1 may be nested inside an accept for an
entry E2, but not withinan accept for E1 itself (either directly or indirectly).

FC-LRM-8/1.1 -46 -

Pascal-FC LRM

8.3. Entry calls
Theform for acall on aprocess entry is:
entry call ::=

process vari abl e. entry identifier [(actual paraneters)]

NOTES

1. The actua parameters must be compatible in number, type and mode with the
formal parameters declared for that entry.

2. It is a run-time error to make an entry call on a process that was never made
executable, or has aready terminated.

8.4. Use of process provides declaration

It is convenient to consider this feature here, because it was introduced to facilitate
certain forms of process interaction when using the Ada-style rendezvous.

There are applications when an instance of a process type wishes to rendezvous
with another instance of the same type. The processes may, for example, be elementsin
a"pipeline'. Inoutline, the process declaration might be as follows:

process type p(pn: integer);
entry el(n: integer);

begi n
(* call entry el of instance pn+l *)

end;

The syntax for an entry call demands a process variable identifier, not a type
identifier. Hence, in order to code the entry call in the statement part of the process type,
variables of the type must already have been declared at this point. Until we have
declared the process type, however, we cannot declare any process variables of that type.
The circularity is resolved by use of the provi des declaration, whose syntax was
given in Chapter 3. The purpose of this form of declaration is to pre-declare the interface
that the process has with other parts of the program: this consists of any parameters and
entries. Once such a declaration has been made, variables of the type can be declared.
Hence, in outline, the above requirements can be met by the following:

FC-LRM-8/1.1 -47 -

Pascal-FC LRM

process type p(pn: integer) provides
entry el(n: integer);
end;

var
el enents: array[1l..pipel ength] of p;

process type p(pn: integer);
entry el(n: integer);

begi n

el enent s[pn+1] . el(k)

end;

8.5. Process Statesand Transitions

This section summarises the effects on process states of the features described in this
chapter.

1. A process that attempts an accept for an entry on which there are no pending
calls becomes "suspended"” if the entry is not mapped to a source of interrupts (see
Chapter 11) or "awaiting interrupt” if it is so mapped.

2. A process blocked at an accept statement may become executable when another
process makes a call on that entry, or (in the case of an entry mapped to a source of
interrupts) when an appropriate interrupt occurs.

3. A process that attempts an entry call on an entry for which there is no pending
accept becomes "suspended” on that entry.

4. A process that makes a call on an entry for which there is a pending accept
becomes "suspended" on that entry following the transfer of parameters to the called
process and the unblocking of the process suspended at the accept .

5. A process suspended at an entry cal may become executable following the
completion of an accept statement for that entry. (including the transfer of var
parameters back to the caller)

FC-LRM-8/1.1 -48-

Pascal-FC LRM

9. SELECTIVE WAITING

Selective waiting in Pascal-FC is accomplished by use of the sel ect statement, which
is similar in many ways to the Ada sel ect. This structutre is not restricted to the
Ada-style of inter-process communication, however: it can also be used with channel
alternatives.

9.1. The select statement
The syntax of the sel ect statement is given below.
sel ect _statenent ::=

[pri] select
sel ect _alternative
{;or select_alternative}
[el se_part]
end

select _alternative ::=

channel _alternative
| replicate_alternative
| accept_alternative
| tinmeout_alternative
| term nate
channel _alternative ::=

[guar d]
channel _operation
[; st at ement _sequence]

guard ::

when boolean_expr essi on =>

replicate_alternative ::=

for variable := expression to expression replicate
channel _alternative

FC-LRM-9/1.1 -49-

Pascal-FC LRM

accept _alternative ::=

[guar d]
accept _st at enent
[; st at enent _sequence]

timeout _alternative ::=

[guard]
ti meout integer_expressi on
[; stat enent _sequence]

el se_part ::=

el se statenent _sequence

NOTES

1. A select statement containing accept aternatives can only be used in the
statement part of a process (not in a subprogram nested within a process).

2. Thettineout, term nate and el se parts are mutually exclusive. It is a
compile-time error to mix these alternatives within asingle sel ect statement.

3. Thevariableinthe repl i cat e aternative (known as the "replicator index") and
the two expressions must all be of equivalent ordinal types.

4. The value of the replicator index may be accessed anywhere in the replicate
aternative. Thistype of aternative isintended to be used in association with arrays
of channels. The index value is determined at run-time by the index of the channel
with which arendezvous is selected for that execution of the sel ect , but it hasno
defined value on completion of the sel ect statement.

9.2. Noteson the Semantics of the select Statement

9.2.1. Indivisibility

The execution of the sel ect statement begins with the evaluation of guards. This
phase is not indivisible. There follows an indivisible phase during which all channels or
entries with open guards are checked for pending calls.

9.2.2. Order of checking for pending calls

The sel ect statement exists in two basic forms. the pri and the "plain” forms. In
the pri form, the order in which open alternatives are checked follows their textual
order. Inthe "plain" form, the implementation may use any convenient order (including
textual order).

FC-LRM-9/1.1 -50-

Pascal-FC LRM

9.2.3. Execution of select with all guards closed

It is a run-time error to attempt to execute a sel ect statement in which there is no
aternative with an open guard, unless there is an el se part. Alternatives which have
no guard (including al t er m nat e alternatives) are considered always open.

9.2.4. Theedsepart
The statements of the el se part are executed if either of two conditions is satisfied:
(1) there are no open guards;

(2) thereisat least one open guard, but none of the associated channels or entries has a
pending call.

9.2.5. Theterminate alternative

A process which becomes suspended on a sel ect statement with a term nate
aternative enters a special state ("termstate”). The process may become executable again
if acal is made on one of the open alternatives. On the other hand, the process may
make a direct transition to "terminated” if all other processes in the program are either
terminated or themselves in termstate.

9.3. Examples

9.3.1. The sdect statement with channel alter natives

The following outline illustrates the use of the sel ect statement with channels and the
replicate aternative. It demonstrates the use of a server process (SCREEN) to
enforce mutually exclusive access to the terminal screen.

program scr eenchan;
(*
Mut ual excl usi on using channel s

*)
const
max = 5;
type
link = channel of synchronous;
var
cons: array[1..max] of I|ink;

process type clienttype(n: integer);
begi n

cons[n] ! any
end;

FC-LRM-9/1.1 -51-

Pascal-FC LRM

var
clients: array[l..max] of clienttype;

process screen;
var
i . integer;
begi n
repeat
sel ect
for i := 1 to max replicate
conms[i] ? any;
witeln(’ Message fromprocess ',i);
or
term nate
end
forever
end;

var
i: integer;
begi n
cobegi n
screen;
for i := 1 to max do
clients[i] (i)
coend
end.

9.3.2. The select statement with accept alter natives

The following is a solution to the bounded buffer problem using the Ada style of inter-
process communication.

program pcons;

(* buffered producer-consuner with ada rendezvous *)

process buffer;
entry take(var ch: char);
entry put(ch: char);

const
buf f max = 4;

FC-LRM-9/1.1 -52-

Pascal-FC LRM

var
store: array[O..buffmax] of char;
nextin, nextout, count: integer;
begi n
nextin := 0;
nextout := 0;
count := 0;
r epeat
sel ect
when count <> 0 =>
accept take(var ch: char) do
ch := store[nextout];
count := count - 1;
nextout := (nextout + 1) nmod (buffrmax + 1);
or
when count <= buffmx =>
accept put(ch: char) do
store[nextin] := ch;
count := count + 1;
nextin := (nextin + 1) nod (buffmax + 1);
or
term nate
end (* select *)
f orever

end; (* buffer *)

process producer;

var

| ocal : char;

begi n
for | ocal

:='a to 'z do

buf f er. put (| ocal)
end; (* producer *)

FC-LRM-9/1.1

-B3-

Pascal-FC LRM

process consuner;
var
| ocal : char;
begi n
r epeat
buf fer.take(l ocal);
wite(local)
until local ="
witeln
end; (* consuner *)

z

begi n
cobegin
producer;
consuner;
buf f er
coend
end.

9.4. Process Statesand Transitions

This section summarises the effects on process states of the features described in this
chapter.

1.

A process that attempts to execute a sel ect on which there are no open
alternatives with pending calls becomes blocked unless thereisan el se part. (In
the special case that there are no open guards and no el se part, a run-time error
must be signalled).

A process that becomes blocked on a sel ect with a t er m nat e aternative
enters the "termstate” state. It may return to the "executable" state if a call occurs
on an open alternative or (in the case of a ,channel or entry mapped to a source of
interrupts) when an appropriate interrupt occurs. It will prroceed directly to the
"terminated” state if the run-time system detects that all processes are in "termstate”
or are already "terminated".

A process that becomes blocked on a sel ect with a ti meout aternative is
considered "delayed”. It may become executable when the specified time has
elapsed, or when a call occurs on an open aternative, or (in the case of a channel or
entry mapped to a source of interrupts) when an appropriate interrupt occurs.,
whichever of these events occursfirst.

A process that becomes blocked on a sel ect with neither t er m nat e nor
ti meout alternatives becomes "suspended' if none of the open-guarded
aternatives is mapped to a source of interrupts, or "awaiting interrupt” if one or
more such alternatives is so mapped.

FC-LRM-9/1.1 -54-

Pascal-FC LRM

10. TIMING FACILITIES

The timing facilities defined as part of Pascal-FC are primarily intended for
implementations designed for real-time programming. However, some elementary
implementation of these facilities will be provided by all versions of Pascal-FC. Asthis
is one of the areas where there are important implementation dependencies, the relevant
User Guide should be consulted.

10.1. The system clock

The timing facilities depend on a system clock, which will be provided as part of the
Pascal-FC run-time environment. All timings in Pascal-FC programs are expressed in
system clock units. The duration of a system clock unit is implementation-dependent,
and need not necessarily be a constant real-time unit.

10.2. Outline of timing facilities
There are three timing facilities:

1. A standard function, cl ock, which can be used to examine the current system
timein clock units;

2. A standard procedure, sl eep, which can be used to delay a process for a specified
number of clock units;

3. A tineout dternativetothe sel ect statement.

10.2.1. The cl ock function

This is a function of no arguments, returning an integer result. This represents the
number of system clock units elapsed since some arbitrary zero (not necessarily the start
of execution of the current program).

10.2.2. The sl eep procedure

This procedure takes a single integer expression as an argument, which is the number of
clock units for which the calling process should be delayed (the sl eep procedure may
also be called by the main program thread, which is not strictly a processin Pascal-FC).

NOTES

1. Thereisno guarantee that the process will indeed be suspended for exactly the time
specified: the process should become "executable® when the period elapses, but
there may not be a free processor.

2. If anegative or zero value is given as the argument to sl eep, the calling process
can be considered to make an instantaneous transition from "executable' to
"delayed” and back to "executable". The scheduler must be invoked when such a
call is executed.

FC-LRM-10/1.1 -55-

Pascal-FC LRM

10.2.3. Thetimeout alternativeto the select statement

One or more of the alternativesin a sel ect statement may be ti neout alternatives.
If no calls arrive on any of the open entries or channels of the sel ect before the period
specified has expired, the ti meout alternative becomes active (provided that it has an
open guard), and any statements following it are executed. (If there are no statements,
thenthe sel ect statement is exited).

It ispossible for a sel ect statement to have several ti meout aternatives with
open guards. In such a case, the one with the smallest specified period will be the
effective one. If several such alternatives become simultaneously due, the language does
not specify which becomes effective.

Negative and zero values may be specified. The same remarks apply as for negative
and zero arguments to the sl eep procedure.
10.3. An exampleusing sl eep and timeout
The following program should be self-explanatory.
program sl eept est 2;

(* illustrates tinmeout alternative to select *)

var
cons: channel of synchronous;

process (;
var
of f: bool ean;
begi n
off := fal se;
repeat
sel ect
cons ? any,;
witeln(’received);
or
ti meout 20;
off := true;
witeln(’ tinmed out’)
end
until off
end;

FC-LRM-10/1.1 -56-

Pascal-FC LRM

process p;
var
count: integer;
begi n
count := 0;
repeat
sl eep(10);
count := count + 1;

wite(’sent ');
cons ! any
until count = 10;

end;
begi n
cobegi n
q. p
coend
end.

The following exemplifies the output from this program.

sent recei ved
sent recei ved
sent recei ved
sent recei ved
sent recei ved
sent recei ved
sent recei ved
sent recei ved
sent recei ved
sent recei ved
timed out

10.4. Process states, deadlock and the timing facilities

A process that becomes "delayed” by executing sl eep or by becoming blocked on a
sel ect witha ti meout aternative will eventually become "executable” again (when
the time has elapsed). The scheduler, therefore, must not indicate that a program has
become deadlocked as long asthere is at least one "delayed" process.

FC-LRM-10/1.1 -57-

Pascal-FC LRM

11. LOW-LEVEL FACILITIES

The facilities described in this chapter are designed for implementations intended for
real-time programming. Their purposeis to enable hardware device-drivers to be written,
including the manipulation of 1/0O device registers and interrupt-handling. The relevant
features are:

e Thetype, bitset, whichis a useful type for modelling I/O device Control and
Status Registers (CSRs).

* Record offset indicators, which are useful in modelling multi-register 1/0 devices.

Mapping indicators, which are used to identify 1/0O devices and for interrupt-
handling.

11.1. Thetype bit set

The values of this type ale setsof 0 .. (n - 1), where the vaue of n is
implementation-dependent. The operators for this type are the set operators familiar in
standard Pascal. These implement union, intersection, set difference, and a test for set
membership, as well as the assignment and relational operators.

11.1.1. Declaration

As bi t set has been introduced as a standard type, objects of this type are introduced
by var declarations. The following declaration illustrates the use of the type bi t set
to represent adevice CSR.

var
i ncsr: bitset;

11.1.2. Assigning values

A bitset literal can be used in expressions involving this type. Suppose, for example, that
Bit 6 of the incsr declared above is the "interrupt enable" bit. The following
assignment would set thisbit to 1, with all other bits cleared to zero:

incsr = [6]
The empty set notation can be used to clear al bits, asfollows:
incsr =]
The set literal notation can be used to set severa bits in a single statement. For
example, to set bits 6,4,3,1 and 0, leaving the remainder cleared to zero:
incsr :=16,4,3,1,0]
If alarge number of bits is to be set, the set literal notation can be tedious. Hence,

Pascal-FC provides a shorthand in the form of a type transfer function, bit s, whichis
described below in the section on type transfer functions.

FC-LRM-11/1.1 -58-

Pascal-FC LRM

11.1.3. Set union oper ator

In the following example, we wish to set bits 6,4,3,1 and O, leaving others unaffected
(which is not necessarily the same as leaving them cleared to zero). The following
statement would achieve this:

incsr :=incsr + [6,4,3,1,0]

Here, the set union operator ("+") has been used. In effect, it performs a bitwise or
operation on its two operands.

11.1.4. Set intersection operator

A common requirement is to examine the state of several bits in a device register,
ignoring the states of the others. For example, the following statement copies the least
significant four bitsof i ncsr into t enp.

tenp :=incsr * [3,2,1,0]

The set intersection operator ("*") in effect performs a bitwise and operation on its two
operands.

11.1.5. Set difference operator

In the following example, we wish to turn Bits 3 and 6 off, leaving the remainder
unaffected. The set difference operator ("-") isused for this purpose, as follows:

incsr :=incsr - [3, 6]

11.1.6. Testing set membership

The state of an individua bit can be tested using the i n operator. An expression
involving this operator has the following form:

integer _expressi on in bitset expressi on
The value of such an expression isof bool ean type.

For example, we can test the value of Bit 7 and take appropriate action in the
following way:

if 7 inincsr then
actionwhenBit 7is1
el se
action when Bit 7is0

11.1.7. Relational operatorsand thetype bitset

All the relational operators can be used with the bi t set type. Operators such as ">"
are used to test for inclusion of one bi t set in another.

11.1.8. Typetransfer functions

Two functions are provided for type transfer between bitsets and integers. The function
bi t s maps integers to bitsets. As previously noted, this can be a useful shorthand

FC-LRM-11/1.1 -59-

Pascal-FC LRM

notation when assigning values to bitsets. To set Bits 0 to 7, for example, we may write:
bs := bits(16#ff)

where bs isabitset variable. Theinverse function, i nt , maps from bitsets to integers.
Hence:

i = int(bs)
where i isaninteger variable.
NOTES

1. Because the number of bits in a bitset is implementation-dependent, the set of
integers involved in these mapping functions will aso vary between
implementations.

2. The mapping between bitsets and decimal integers is implementation-dependent.

3. An expression of type bitset may not appear as a parameter to the read or
r eadl n procedures, but it may appear as a parameter to wite or witeln.
The format in which the set value is output is implementation-dependent.

11.2. Addressing Device Registerswith Mapping Indicators

One of the applications of mapping indicators is to permit device registers to be modelled
as variables in the Pascal-FC program. Such registers may then be modified and read by
using assignment statements.

Suppose that a device-driver is required for a terminal. Consider the following
declaration:

var
i nbuff: char;

The variable, i nbuff will be placed by the compiler somewhere in the machine's
memory map, but the programmer does not know where. If i nbuff is a hardware
register, the compiler must be forced to map the variable to a specific place. Thisis one
of the applications of mapping indicators.

The syntax of avariable declaration in Pascal-FC Ci is.
vari abl e _declaration ::=

var

variable_ list : type;
{variable list : type;}

FC-LRM-11/1.1 -60-

Pascal-FC LRM

variable list ::=

identifier [rmapping_indicator]
{,identifier [mapping_indicator]}

mappi ng_i ndicator ::=

at integer_const ant

The mapping indicator provides the necessary information for the compiler to carry out
the mapping. The interpretation of this indicator is implementation-dependent: it may,
for example, be a port address, or it may be a memory address in a system using
memory-mapped 1/0. An implementation is free to impose any restrictions on the use of
such indicators, and is permitted to ignore them. The relevant User Guide will provide
information on any such restrictions.

If the input character buffer for the terminal controller was located at hexadecimal
800001, then the following declaration could be written in Pascal-FC:

var
i nbuff at 16#800001: char;

Referencesto i nbuf f would then read the character currently held in the input buffer.

The terminal controller output character buffer may reside at hexadecimal 800003.
The following declaration expresses this:

var
out buff at 16#800003: char;
Assignments, such as:
outbuff :="a’
can then be made.

In the event that the variable which has a mapping indicator is an array or record,
the indicator specifies the base of the structure.

11.3. Use of Record Offset Indicators

Consider again the terminal controller used in previous examples. In addition to the two
character buffers, let us suppose that there are also two control and status registers (one
for input and one for output). Individua bits in the control and status registers have
particular significance defined by the hardware design. As there is a requirement to
manipulate individual bits, the control and status registers will be represented as bitsets.

There may be severa different termina controllers in a system, each with the same
form, ie

FC-LRM-11/1.1 -61-

Pascal-FC LRM

i nput csr at base address + 0
i nput character buffer at base address + 1
out put csr at base address + 2
out put character buffer at base address + 3

A suitable Pascal data structure for such an object would be arecord. A record type
could be declared as follows:

type slu =

record
incsr: bitset;
i nbuff: char;
outcsr: bitset;
out buff: char

end;

Individual instances could then be declared, and mapped onto the appropriate physical
addresses, asfollows:

var
terml at 16#800000, tern? at 16#800010: sl u;

This example assumes that bitsets and characters occupy a single storage unit in the
implementation concerned.

The requirements are often somewhat more complex. In the Motorola 68000, for
example, the registers in a peripheral controller are likely to occupy odd addresses. The
above type declaration would not be suitable for such a case, because the fields would be
mapped onto consecutive addresses (ie, some odd and some even). Moreover, modern
peripheral controller devices are often complex and contain a large number of registers.
Only a small subset of these registers, located at widely differing offsets from the base
address of the device, may be of interest in a particular application. Some facility is
required to indicate that the record fields are not to be mapped to consecutive addresses,
but to any arbitrary offsets, In Pascal-FC, an offset indicator may be included in the
declaration of arecord field to cater for this.

For example, the following would cater for the 68000-style device:

type slu =

record
incsr at offset 1: bitset;
i nbuff at offset 3: char;
outcsr at offset 5: bitset;
outcsr at offset 7: char

end;

11.4. Interrupts

Three of the inter-process communication primitives (semaphores, channels and process
entries) provided in Pascal-FC may be mapped on to the target machine's interrupts. In

FC-LRM-11/1.1 -62-

Pascal-FC LRM

each case, the target hardware is analogous to an implicit process which communicates
with the software process which the programmer has written. The interpretation of the
information is implementation-dependent. It may, for example, indicate an interrupt
vector, but thisis not arequired interpretation.

11.4.1. Mapping semaphoresto interrupt sources
In this case, amapping indicator is used in the semaphore declaration, as follows:

var
timsem at 64: semaphore;

where the supplied constant specifies the source of the interrupt. The software process
must execute the semaphore wai t operation. The hardware will, in effect, perform the
corresponding si gnal operation when an interrupt is generated by the specified source.

11.4.1.1. Program example

The following is asimple example. Suppose that a hardware timer has been programmed
to generate interrupts through vector 64 at the rate of one per second. On receiving an
interrupt, the timer driver process outputs the current value of the counter.

programticksi;
(* produce 1-second ticks using tinmer device *)
(* semaphore version *)

const
i nt vec=64;

var
rtclock at 16#800021: tinregs; (* a suitable record type *)
timsem at intvec: semaphore;

procedure initialise;
(* set up timer to interrupt at 1Hz *)
begi n

suitable initialisation code
end; (* initialise *)

FC-LRM-11/1.1 -63-

Pascal-FC LRM

process timer;

var
| ocal : integer;
begi n
| ocal := 0;
r epeat
wait(tinmsen;
clear interrupt condition;
| ocal := local + 1;
writeln(local)
until local = 10;
stop clock

end; (* timer *)

begin (* main *)
initial (ti meemO0);

initialise;

cobegi n
timer

coend

end.

11.4.2. Mapping channelsto interrupt sources

Mapping a channel onto an interrupt source is again accomplished by using a mapping
indicator in avariable declaration. The software process which is intended to respond to
the interrupt is then written to make a rendezvous on the channel concerned. The "other
party" in the rendezvous is the hardware.

NOTES

1. The implementation may treat all such rendezvous as though the channel involved
were of type synchr onous, but thisis not a requirement.

2. The language does not specify whether interrupt sources must be "senders' or
"receivers’.

11.4.2.1. Program example

The following is a channel version of the program used to illustrate the mapping of
semaphores on to interrupts:

FC-LRM-11/1.1 -64-

Pascal-FC LRM

programti cks3;

(* produce 1-second ticks using tiner device *)
(* channel version *)

const

i nt vec=64;

var
rtclock at 16#800021: tinregs; (* a suitable record type *)
tinchan at intvec: channel of synchronous;

procedure initialise;
(* set tinmer interrupt vector and preset *)
begi n

suitable initialisation code
end; (* initialise *)

process timer;

var
| ocal : integer;
begi n
| ocal := 0;
r epeat
ti nchan ? any;
clear interrupt condition;
| ocal := local + 1;
writeln(local)
until local = 10;
stop clock

end; (* timer *)

FC-LRM-11/1.1 -65-

Pascal-FC LRM

begin (* main *)

initialise;

cobegi n
timer

coend

end.

11.4.3. Mapping process entriesto interrupt sources

In this case, a mapping indicator is used in the entry declaration. In effect, a rendezvous
takes place between the software process which possesses the entry, and the hardware,
which makes a call to the entry.

NOTE

The use of any parameters to the entry is implementation-dependent.

11.4.3.1. Program example
The following is another version of the program used hitherto for illustration:
programti ckss3;

(* produce 1-second ticks using tinmer device *)
(* ada version *)
const

i nt vec=64;

var
rtclock at 16#800021: tinregs; (* a suitable record type *)

procedure initialise;
(* set timer interrupt vector and preset *)
begi n

suitable initialisation code
end; (* initialise *)

FC-LRM-11/1.1 - 66 -

Pascal-FC LRM

process timer;

entry interrupt at intvec;

var
| ocal : integer;
begi n
| ocal := 0;
r epeat
accept interrupt do
clear interrupt condition;
| ocal := local + 1;
writeln(local)
until local = 10;
stop clock

end; (* timer *)

begin (* main *)

initialise;

cobegi n
timer

coend

end.

11.5. Interruptsand process states

Processes that are blocked on semaphores, channels or entries are considered "awaiting
interrupt” (unless they are considered "delayed"). Hence, the run-time system must not
indicate deadlock aslong asthereis at least one process so blocked.

FC-LRM-11/1.1 -67-

Pascal-FC LRM

APPENDIX A - CHARACTER SET

The language does not define the set of characters that can appear in character or string
literals, but (apart from those contexts), the character set consists of the following:

Theletters A to Z and ato z.
The decimal digits0to 9.
The space and horizontal tabulation character.
An end-of-line marker, which is implementati on-dependent.
The following symbols:
(Y[T1{}Yy+-*1/1:;, . <>=12#%’

FC-LRM-A/1.1 -68-

APPENDIX B - RESERVED WORDS

accept
at
channel
const

el se
export
forward
i f
noni t or
of

pri
program
r epeat
resource
t hen
type
when

FC-LRM-B/1.1

and

begi n
cobegin
di v

end

for
function
in

not
of f set
procedur e
provi des
replicate
sel ect

ti meout
unti |
whi | e

array
case
coend

do

entry

f orever
guar ded
nod

nul |

or
process
record
requeue
term nate
to

var

- 69 -

Pascal-FC LRM

Pascal-FC LRM

APPENDIX C - PRE-DEFINED DATA TYPES
The following type identifiers are pre-defined:

char i nt eger r eal bool ean
semaphore condition synchronous bitset

Semaphore, condition, synchronous and bitset types were considered respectively in
Chapters 4, 5, 7 and 11. This Appendix provides a brief introduction to the first four
types for readers not familiar with Pascal.

1. Thetype char
Objects and constant of type char may contain a single character value.

1.1. Set of values
The set of values for objects of thistype is not defined by the language.

1.2. Operators
The set of permissible operatorsis:
1. Assignment.
2. Certain pre-defined subprograms (see Appendix D).
3. Therelationa operators:
< <= > >+ <> =

Operators such as "<" refer to the collating sequence of characters for the
implementation, which is not defined by the language.

2. Thetype bool ean

2.1. Set of values

The permissible values for objects of this type consists of the two pre-defined identifiers,
trueand fal se.

2.2. Operators

The operators consist of:

1. Assignment.

2. Thebinary operators and and or, and the unary operator not .
3. Certain pre-defined subprograms (see Appendix D).
4

The relational operators. For purposes of the inequality operators, fal se is
defined to be "less than™ t r ue.

FC-LRM-C/1.1 -70-

Pascal-FC LRM

3. Thetype i nt eger

3.1. Set of values

The set of permissible values is implementation-defined, but there must be an unbroken
set from the most negative to the most positive. A pre-defined constant, maxi nt (of
type i nt eger) hasthe most positive value for the implementation.

3.2. Operators

The set of operators consists of:

1. Assignment.

2. Theunary operators + and -, which have the usual interpretation.

3. The binary operators, + - * /[for addition, subtraction, multiplication and
division with truncation respectively.

4. The integer divison operators div and nod for quotient and modulus
respectively.

5. Certain pre-defined subprograms (see Appendix D).
6. Therelationa operators, which have the usual interpretation.

4. Thetype real
Objects of this type are floating-point real numbers. An implementation is not required
to support this type.

4.1. Set of values
The set of values is implementation-dependent.

4.2. Operators

The set of operators is similar to that for i nt eger, except that the di v and nod
operators are not permitted, and the set of pre-defined subprograms is different (see
Appendix D).

FC-LRM-C/1.1 -71-

Pascal-FC LRM

APPENDIX D - PRE-DEFINED SUBPROGRAMS

1. Mathematical Functions

Table D/1 lists the mathematical functions pre-defined in Pascal-FC. Note that those
involving real arguments or results will not be included in an implementation that does
not provide the type r eal

Lname argument result
abs real/integer | real/integer
arctan | real real
cos real real
exp real real
In real real
odd integer boolean
sin real real
sqr real/integer | real/integer
sort real/integer | real

Table D/1; Mathematical Functions

2. Ordering Functions

All ordinal types are ordered sets of values. Table D/2 lists the ordering functions, which
are applicable to ordinal types.

name | argument | result

ord ordinal integer
pred ordinal ordinal
succ ordinal ordinal

Table D/2: Ordering Functions

NOTES
1. pred isnot defined for the first value of atype, and succ is not defined for the
last.

2. When applied to integers, the or d function returns the value of the argument.
3. For types other than integer, or d returns the value O for the first member of the set.

FC-LRM-D/1.1 -72-

Pascal-FC LRM

4. Thetype bool eanistheordered set {f al se, true}.

3. TypeTransfer Functions
Table D/3 sets out the functions provided for transfer between types.

name | argument | result
bits integer bitset

chr integer char

int bitset integer
round | redl integer
trunc | red integer

Table D/3: Type Transfer Functions

4. Inter-process Communication

Table D/4 lists the subprograms concerned with inter-process communication, which
have been described in the chapters specified in the table.

name form chapter

delay procedure
empty function

initial procedure
resume | procedure
signal procedure
wait procedure

Ao~ |OT|O

Table D/4: Inter-Process Communication Subprograms

5. Input and Output
Input and output facilities are provided by two boolean functions and 4 procedures.

5.1. The eol nand eof functions

In Pascal-FC, these are both bool ean functions of no arguments. eol n returns
t r ue when the next character in the input stream is the end-of-line marker and f al se
otherwise. eof returns tr ue when the next character in the input stream is the end-
of-file marker and f al se otherwise. The treatment of end-of-file is implementation-
dependent.

FC-LRM-D/1.1 -73-

Pascal-FC LRM

5.2. The read and readl n procedures
A call tothe r ead procedureis of the form:
read(vari abl e{, vari abl e})
The only permissible types for the argumentsare: char, i nt eger and real .
A call tothe r eadl n procedure has the form:
readl n[(vari abl e{, vari abl e})]
The same restrictions are applied to the types of the arguments. The r eadl n procedure

consumes characters, up to and including the next end-of-line character, after satisfying
its arguments.

53. The witeand witel nprocedures
A call to these procedures has the form:
wite[ln] [(output_value format{, output_value format})]

output _value ::=

expression | string
format ::=
: field_width_expr essi on: decimal_places _expr essi on
| %base_expression

string ::=

' { printing_char act er}’

NOTES

1. The arguments to these procedures may be of types char, integer, real,
semaphor e or bitset,inadditionto string literals.

2. Thedecimal places expression is only applicable to arguments of type r eal .

3. The implementation may apply restrictions to the use of based output, which isin
any case only defined for numeric types.

4. Theoutput format for arguments of type bi t set isnot defined.
6. Timing

This category consists of the procedure, del ay, and the function,cl ock. These were
described in Chapter 10.

FC-LRM-D/1.1 -74 -

Pascal-FC LRM

7. Miscellaneous

7.1. The r andomfunction

Thisis afunction of one integer parameter. If n isthe parameter, the function returns a
valueintherange 0 .. abs(n).

7.2. The priority procedure
This procedure is provided to control process priority, and it was introduced in Chapter 3.

FC-LRM-D/1.1 -75-

8. APPENDIX E - COLLECTED SYNTAX

accept_alternative
accept _alternative ::=
[guard]

accept _st at ement
[; st at ement _sequence]

accept_statement

accept _statenent ::=

accept entry identifier [formal _part] do

st at enent

actual_parameters
actual paraneters ::=

expression {, expression}

add_op
add op ::=

+ | - | or

anonymous_process _type declaration

anonynous_process_type_decl aration :

[provi des_decl arati on]
process_body_decl arati on

FC-LRM-E/1.2 -76-

Pascal-FC LRM

array_subscript
array_subscript ::=

"[" ordinal_expr essi on{, ordinal_expressi on}"]"

array type

array_type

array index_type{index _type} of type

assignment_statement

assi gnnment _st at enent

vari abl e : = expression
base
base ::=
unsi gned_i nt eger
based_integer

based i nteger ::=

base#digit char act er { digit_char act er}

bitset_literal

bitset literal

e

| "["integer_expression{, integer_expression}"]"

FC-LRM-E/1.2 -77-

Pascal-FC LRM

Pascal-FC LRM

case alternative
case alternative ::=

case_| abel {, case_| abel }: st at enent

case |label
case |l abel ::=

ordinal_const ant

case_statement

case_st at enent
case ordinal_expressi on of
case_alternative

{;case_alternative}
end

channel_alternative
channel _alternative ::=
[guard]

channel operation
[; stat enent _sequence]

channel_operation
channel operation ::=

send | receive

FC-LRM-E/1.2 -78-

Pascal-FC LRM

channe_type
channel type ::=

channel of type

character_literal

character literal

"char act er’

compound_statement

conmpound_st at enent

begi n
st at enent _sequence
end

concurrent_statement

concurrent _stat enent

cobegin
st at enent _sequence
coend

constant
constant ::=
constant_i denti fier
| integer literal

| real literal
| character literal

FC-LRM-E/1.2 -79-

constant_declaration

constant _declaration ::=

const
identifier = constant;
{identifier = constant;}

decimal_integer
deci mal _integer ::=

[+] -] unsigned_integer

declaration_part

declaration_part ::=

{

constant _decl arati on
t ype_decl arati on

vari abl e_decl arati on
procedure_decl arati on
function_declaration

}

deferred_guarded_procedure_declaration

def erred_guarded_procedure_declaration ::=

forward_guarded_procedur e_header
guar ded_pr ocedur e_body

deferred_sequential_subprogram_declaration
def erred_sequenti al _subprogram decl arati on

procedur e _header forward; procedure_stub
| function_header forward; function_stub

FC-LRM-E/1.2 -80-

Pascal-FC LRM

Pascal-FC LRM

else part
el se_part ::=

el se statenent _sequence

empty_statement

enpty_st at enent

{ white_space char act er}

entry call
entry call ::=

process vari abl e. entry identifier [(actual paraneters)]

entry_declaration
entry declaration ::=

entry identifier [formal _part] [mapping_indicator];

enumeration_type
enuneration_type ::=

(identifier_list)

exponent_part
exponent _part ::=

["e"|"E"] [+]|-] unsigned_integer

FC-LRM-E/1.2 -81-

Pascal-FC LRM

export_list
export list ::=

export procedure identifier list;
{export procedure i dentifier_list;}

expression
expression ::=

si npl e_expression {rel _op sinple_expression}

factor
factor ::=

unsi gned_i nt eger

based i nt eger

unsi gned_r eal

constant_i denti fier

vari abl e

function_identifier [(actual paraneters)]
not factor

bitset literal

(expressi on)

field_declaration
field declaration ::=

identifier[offset _indicator]
{,identifier [offset _indicator]}

type

field_list
field list ::=

field declaration {;field declaration}

FC-LRM-E/1.2 -82-

Pascal-FC LRM

field_selector
field selector ::=

. record field i denti fi er

formal_part
formal _part ::=

([var] identifier list : type identifier
{;[var] identifier list : type identifier})

for_statement

for_statenent

for variable := expression to expression do
st at enent

forward_guarded_procedure_header
forward_guarded_procedure_header ::=

guarded procedure identifier[formal part]
when boolean _expr essi on; f orwar d;

fractional_part
fractional _part ::=

. unsi gned_i nt eger

FC-LRM-E/1.2 -83-

Pascal-FC LRM

full_guarded_procedure_declaration
full _guarded_procedure_declaration ::=

guarded procedure identifier[formal part]
when boolean_expr essi on;
[decl aration_part]

begi n
st at enent _sequence

end;

full_sequential_subprogram_declaration
full _sequential subprogram declaration ::=
sequenti al _subprogram header
[decl aration_part]
begi n

st at enent _sequence
end;

function_header
functi on_header ::=

function identifier [formal part]
type i dentifier;

function_stub
function_stub ::=

function identifier;

[decl aration_part]
begi n

st at enent _sequence
end;

FC-LRM-E/1.2 -84-

global_declaration_part

gl obal _decl aration_part ::=

{

constant _decl arati on

t ype_decl arati on

vari abl e_decl arati on

noni t or _decl arati on
resource_decl arati on
procedure_decl aration
function_declaration
process_type_decl aration
process_obj ect decl aration

}

guard

guard ::

when boolean_expr essi on =>

guarded_procedure _body

guar ded_procedure_body ::=

guarded procedure identifier

[decl aration_part]
begi n

st at enent _sequence
end;

guarded_procedure_declaration

guar ded_procedure_decl aration :

full _guarded _procedure_decl aration
| deferred _guarded procedure_decl aration

FC-LRM-E/1.2 -85-

Pascal-FC LRM

identifier
identifier ::=
letter{letter | digit}
identifier_list
identifier_list ::=

identifier{,identifier}

if statement
if _statement ::=
i f boolean _expression then
st at enent

[el se
st at enent |

index_type

i ndex_type ::=

"[" ordinal_r ange{, ordinal_range}"]"

integer _literal

i nteger _literal

deci mal _i nt eger
| based_i nt eger

FC-LRM-E/1.2 -86-

Pascal-FC LRM

Pascal-FC LRM

main_statement_part
mai n_statenent _part ::=
st at ement _sequence
[; concurrent _st at ement
[; stat ement _sequence]]

| concurrent _statenent
[; st at enent _sequence]

mapping_indicator
mappi ng_i ndicator ::=

at integer_const ant

monitor_body
noni tor _body ::=

begi n
st at enent _sequence

monitor_call
nonitor _call ::=

monitor_i denti fi er. exported procedure i denti fi er
[(actual _paraneters)]

monitor_declaration
nonitor_declaration ::=

noni tor identifier;
export |ist
[decl aration_part]
[noni t or _body]
end;

FC-LRM-E/1.2 -87-

Pascal-FC LRM

mul_op
mul _op ::=

*| / | div]| nod | and

null_statement
null _statement ::=

nul |

offset_indicator
of fset indicator ::=

at of fset integer_const ant

ordinal_range

ordi nal _range

ordinal_const ant . . ordinal_const ant

procedure_call
procedure_call ::=

procedure i dentifier [(actual paraneters)]

procedure_header
procedure_header ::=

procedure identifier [formal part];

FC-LRM-E/1.2 -88-

Pascal-FC LRM

procedure_stub
procedure_stub ::=
procedure identifier;
[decl aration_part]
begi n

st at enent _sequence
end;

process_activation
process_activation ::=

process object i dentifier[array_index][(actual paraneters)]

process _object_declaration
process_obj ect declaration ::=

anonynous_process_type _decl aration
| process_vari abl e _decl aration

process_type
process type ::=

process i dentifier
| process array_type

process_type declaration
process_type declaration ::=

[process_type provides_decl arati on]
process_type body declaration

FC-LRM-E/1.2 -89-

Pascal-FC LRM

process type body declaration
process_type body declaration ::=
process type identifier[formal part];
{entry_decl arati on}
[decl aration_part]
begi n

st at enent _sequence
end;

process type provides declaration
process_type provides_declaration ::=
process type identifier[formal part] provides
entry declaration

{entry_decl aration}
end;

process variable declaration
process_vari abl e declaration ::=

identifier |ist : process type;

program
program ::=

program header

gl obal _decl aration_part
begi n

mai n_st at ement _part
end.

FC-LRM-E/1.2 -90-

program_header
program header ::=

program i dentifier;

real_literal

real literal

[+] -] unsigned real

record_type

record_type
record

field list
end

receive
receive ::=

channel_variable 2

repeat_limit

repeat limt ::=

unt il boolean _expression

| forever

FC-LRM-E/1.2

vari abl e

Pascal-FC LRM

Pascal-FC LRM

repeat_statement
repeat _statenment ::=
r epeat

st at enent _sequence
repeat limt

replicate alternative
replicate alternative ::=

for variable := expression to expression replicate
channel _alternative

requeue_statement
requeue_statenment ::=

requeue [resource identifier.]
guarded procedure i dentifier[(actual paraneters)]

resource_body
resource_body ::=

begi n
st at enent _sequence

resource_call
resource_call ::=

resource i dentifier.
exported procedure i dentifi er[(actual paraneters)]

FC-LRM-E/1.2 -92-

Pascal-FC LRM

resource_declaration
resource_declaration ::=

resource identifier;
export |ist
resource_decl aration_part
[resour ce_body]
end;

resource _declaration_part

resource_declaration_part ::=

{

constant _decl arati on

t ype_decl arati on

vari abl e_decl arati on
procedure_decl aration
function_declaration

guar ded_pr ocedure_decl arati on

}

select_alternative
select _alternative ::=

channel _alternative
replicate_alternative
accept _alternative

ti meout _alternative
term nate

FC-LRM-E/1.2 -93-

select_statement
sel ect _statenent ::=

[pri] select
select _alternative
{;or select _alternative}
[el se_part]

end
send
send =
channel_variable ! expression

sequential_subprogram_declaration
sequenti al _subprogram declaration ::=

full _sequential subprogram decl arati on
| deferred_sequential subprogram decl aration

sequential_subprogram_header
sequenti al _subprogram header ::=

procedur e_header
| function_header

simple_expression
si npl e_expression ::=

[+]-] term {add _op ternt

FC-LRM-E/1.2 -94 -

Pascal-FC LRM

Pascal-FC LRM

statement
statenent ::=

assi gnnment _st at enent
procedure_cal
for_statenent
repeat _st at enent

whi | e_st at enent

i f_statement
case_st at enent
conmpound_st at enent
enpt y_st at enent
concurrent _stat enent
process_activation
noni t or _cal

channel operation
sel ect _st at enent
entry_ cal
accept _st at enent
resource_cal
requeue_st at enent
nul | _st at ement

statement_sequence

st at enent _sequence ::

st at enent
{;statenent}

string
string ::=

"{ printing_char acter}’

FC-LRM-E/1.2 -95-

Pascal-FC LRM

term
term ::=

factor {nul _op factor}

timeout_alternative
timeout _alternative ::=

[guard]
ti meout integer_expressi on
[; stat enent _sequence]

type
type ::=

type i dentifi er
enuner ati on_type
array_type
record_type
channel _type

type declaration
type declaration ::=
type

i dentifier
{identifier

type;
type; }

unsigned_integer
unsi gned_i nteger ::=

decimal_di gi t { decimal_di gi t}

FC-LRM-E/1.2 -96-

Pascal-FC LRM

unsigned_real

unsi gned_r eal

unsi gned_i nt eger exponent part
| unsigned_integer fractional part [exponent part]

variable
variable ::=

variable i dentifier{sel ector}

variable declaration
vari abl e_declaration ::=
var

variable list : type;
{variable_list : type;}

variable list
variable list ::=

identifier [mapping_indicator]
{,identifier [mapping_indicator]}

while_statement

whi | e_st at enent

whi | e boolean_expr essi on do
st at enent

FC-LRM-E/1.2 -97-

Pascal-FC LRM

REFERENCES

1. ANSI, Reference Manual for the Ada Programming Language. 1983.

2. M. Ben Ari, Principles of Concurrent Programming, Prentice-Hall (1982).

3. M. Ben Ari, Principles of Concurrent and Distributed Programming, Prentice-Hall
(1990).

4. R. E. Berry, Programming Language Trandation, Ellis Horwood (1982).

5. G.L. Davies and A. Burns, *‘ The Teaching Language Pascal-FC,’” The Computer
Journal 33(2) pp. 147-154 (1990).

6. E.W. Dijkstra, ‘‘Co-operating sequential processes,”” pp. 43-112 in Programming
Languages, ed. F. Genuys,Academic Press (1968).

7. P. Brinch Hansen, ‘*Structured Multiprogramming,”” CACM 15(7) pp. 574-578
(2972).

8. C.A.R. Hoare, ‘‘Monitors. an Operating System Structuring Concept,”” CACM
17(10) pp. 549-557 (1974).

9. Intermetrics, ‘‘Draft Mapping Rationale Document,”” Ada 9X Project Report
(August 1991).

10. INMOS Limited, Occam Programming Manual, Prentice Hall (1984).

FC-LRM -98-

Pascal-FC LRM

CONTENTS
LINTRODUCTION ..ottt ettt st et e st e sre s sbe b e snreesseesaneenreesnns 2
1.1 PUrpose of PasCal-FC ...t 2
1.2 Historical Backgroundccoceieeiieii e s 2
1.3 Scope of thEMaNUALcc.oceeiieeceeceee e 2
1.4 SyntaX NOLALIONcoiuieiecieciecie et sneenne e 2
2 PROGRAM STRUCTURE, DECLARATIONSAND STATEMENTS. 5
A N = 0o | = T [T SR 5
2.2 DECLArALIONSoeecveecieectee ettt e be e s re et e s are e ebe e sane e reeenns 6
2.2.1 Constant deClarationsccceeeeeeieeeiiesreesree e esree e sre e sree e naeas 7
2.2.1.1 Character [IHEralSooooveceeiieccee ettt 7
2.2.1.21INtEQEr HEENalS .ovvoeeciecece e 7
2.2.1.3REAIITErAlS ..cveeceve ettt e 8
2.2.2Type deClarationscccceceeiieeieieese et sreenre e 8
2.2.2. 1 ENUMEration tYPES ..eeecveeieeeiecteeieeee st ete et stesee et s 9
2.2.2.2 ATTAY LYPES i eittie ettt nree s 9
2.2.2.3RECONALYPES ..ottt et nne e 10
2.2.3Variable deClarationsc.cccceeeeeeiieeiee et 10
2.2.4 Procedure and function declarationsccccoceeveeeieeeieeciieeceecveenen, 11
2.3 SLALEMENTS ... e e e e s e e e e enreeeaaaas 13
2.3.1 Theassignment StatemMentcccceveeieiieeie e e 13
2.3.2 The Case StALEMENTcccveeireecieccee ettt neas 15
2.3.3 The compound StatemMeNtccccceveeiieiieie e 16
2.3.4Theempty StAtEMENTcceeiiceceeeee e e 16
2.3.5Thefor StAtEMENLc.cooeieieeceecee e 16
2.3.6 Theif SEAEMENToiceeececeeceee e 16
2.3.7 Procedur@Calloooeeiieiiriecee ettt 17
2.3.8Thenull StateMENtceeeiiiiceicee e 17
2.3.9Therepeat StateMENtccceeiiiiececeee e e 17
2.3.10 Thewhile StatemeEntccoccvieiie i 17
2.4 COMIMENTS ... e e e s e e e e sar e e e e e e rare e e e e aabeeeesenneeeesanneeeesanns 18
BPROCESSES ..ottt ettt e e ere e s re e reenareens 19
S.LPrOCESS SLALEScvveiiiccieee et e e e e e e e s e e e e e e eneeeeeeans 19
3.2 Process DECIArationsccccceeiiieeireecieeiree e e stee e e sreesreesreesreesressaneeereeenne 20

contents

Pascal-FC LRM

3.2.1 Process Type DeClarationsccccceveevieieeieeiiesee e esie e
3.2.2 Process Object DeClarationscceuveeeveeieeiiesee s esie e
3.3 ProCceSS ACHIVALIONccoviiieiiiiesieeieie ettt s nneas
3.3. 1 Theconcurrent StateMEeNtcccceeveeierieerenene e
3.3.2 Activating elements of an array of proCcessescccccvveveevveeesreenn.
3.4 Phases of Execution of a Pascal-FC Programcccccceceeveeeveeneseesveennn.
3.5 Process Scheduling and Priorityccccoceeieeieiecse e
3.6 An Example: Multiple Update of a Shared Variablecccceeuvenneee.

3.7 Deadlock
4 SEMAPHORES.......
4.1 Declaration

4.2 Operations 0N SEMAPNOIESc.ccceeieiieiiere e
4.21The initial ProCedure ...
4.22The Wai t ProCEUUINEccoiieiieeeeese e

4.2.3The si gnal

[T g0Ter = U = S

4.3 An Example: Multiple Updatecccoevveieiiicecece e
4.4 Process States and TranSitioNScocceeeceeeiieee e

5MONITORS
5.1 Declaration
5.2 Callsto monitors

5.3 CONAITION VATTADIES ..o e e e e e e

5.3.1 Declaration ...

5.3.2 Operations 0N CONAItIONScccueieeiieiieciere e
5.3.2.1The del ay ProCedurecceiieieieeie e
5.3.22The resSun® ProCeAUIEoieiieieeieee e steese et

5.3.2.3The enpt

Y FUNCLION oo

5.4 An Example: the Bounded BUfferccccooveeeiieiecceseecece e,
5.5 Process Statesand MONITOrScccecveeeieeiecie e

6 RESOURCES
6.1 Declaration

6.2 CallSTOTESOUICES ...oecuvieee ettt st et ee e nre e
6.3 Therequeue StateMENtccceiieie e e
6.4 An Example: the Alarm ClOCKcccceevieiiiieciee e
6.5 Process Statesand TranSitioNScccceveeieieeiiece e
7 RENDEZVOUSBY CHANNEL ..cooiiiicisieiee e

7.1 Channels

7.1.1 Declaration and use of ChannNElSoocceeeeeeee et

7.1.1.1 Examples

contents

20
21
21
22
22
23
23
24
25
26
26
26
26
26
27
27
28
30
30
31
31
31
32
32
32
32
32
34
36
36
38
38
39
41
42
42
42
42

7.1.2 Operations on channels .
7.2 Thetype synchronous ...

Pascal-FC LRM

7.3 An Example: Unbuffered Producer-Consumercccceceeveveveesieenns
7.4 Process Statesand TranSitioNSccccceeveeieceesecie e

8 ADA-STYLE RENDEZVOUS..
8.1 ProcessENtriescccoceeennee
8.2 The accept statement
83Entrycallsccoovecvvrveiennn,

8.4 Use of process providesdeclarationcccccevveeveiveeseevecce e,
8.5 Process Statesand TranSitioNScccccceeveeieceeieeie e

9SELECTIVE WAITING
9.1 The select statement

9.2 Notes on the Semantics of the select Statementccccveeeeeveeeeeeeeeeeeeeen,

9.2.1 Indivisibilityccccccunee.

9.2.2 Order of checking for pending callsccccccevveveiieieece e,
9.2.3 Execution of select with all guardsclosedccccoeevveeececie e,

9.24Theesepart ..o

0.25 ThetarminNatE AltE NALIVEeeeeeeeeeeeeeeeeeeee et e e eeeaa e

9.3 EXamplescoceevevevvecieene,

9.3.1 The select statement with channel alternativescccccoeeeeeeveeeeeeeen..
9.3.2 The select statement with accept alternativescccccceeveveveevieennnn,
9.4 Process StateS and TraNSItiONSeeeeeeee oo e e e e e e eeeeeaaeens

10 TIMING FACILITIES
10.1 The system clock
10.2 Outline of timing facilities .

10.2.1 The cl ock function ...

10.2.2 The sl eep procedure
10.2.3 Thetimeout alternative

tothesdect statementcooeeeveeeeeeeeienne.

10.3 An exampleusing sl eep and timeoutccccccevveveecieceececce e,
10.4 Process states, deadlock and the timing facilitiescccoceeceveeieennne

11 LOW-LEVEL FACILITIES...
11.1 Thetype bitset
11.1.1 Declarationc.........
11.1.2 Assigning values
11.1.3 Set union operator

11.1.4 Set inter SECtioN OPEr ALONocveceeeieeee et

11.1.5 Set difference operator
11.1.6 Testing set member ship

contents

43
43
44
44
46

46
46
47
47
48
49
49
50
50
50
51
51
51
51
51
52
54
55
55
55
55
55
56
56
57
58
58
58
58
59
59
59
59

Pascal-FC LRM

11.1.7 Relational operatorsand thetype bitsetcccoeveveevvicececciece,

11.1.8 Typet
11.2 Addressin

Fansfer fUNCLIONSccovviiiineeee e
g Device Registerswith Mapping Indicatorsccccceeueniee

11.3 Use of Record OffSet INAICALOrSueeeeeeeeeeeeeeeeeeeeeee e
I a1 = o Vo SRR

11.4.1 Mappi

Nng semaphoresto interrupt SOUrCEScooveeeeeeriecieeveesieenns

11.4.1.1 Program eXampleccceceeeieieeiesecie et

11.4.2 M appi

Nng channelsto interrupt SOUrCeSccvveveeeeveeve e

11.4.2.1 Program eXampleccccceiieieeiese et

11.4.3 Mappi

Nng process entriesto interrupt SOUrCeScccevveeveeieeveesieenns

11.4.3.1 Program eXampleccccoceieeieeiiesece e s

115 Interruptsand ProCeSS SLALEScccceeveereerieeiiecie e
APPENDIX A - CHARACTER SET ..o
APPENDIX B - RESERVED WORDSoooiiieeeeee s

APPENDIX C-P

RE-DEFINED DATA TYPES ..o

I 1= 1Y/ o L= o o = L USRI
1.1 SEt Of VAIUES ...ttt ettt e nne e

1.2 Operators
2 Thetype bool

AN i

2.1 SEE Of WAIUBS ..ottt e e e e e e e e e e e e e e e e e e eeeeeaeeeas

2.2 Operators

BTHELYPE | N EGET e s
L SEL Of VAIUES ..ottt st nne s

3.2 Operators
4 Thetype r eal

AL SEE Of VAIUEBS ..ot e e e e e e e e e e e e e e ae s

4.2 Operators
APPENDIX D -P

RE-DEFINED SUBPROGRAMS ...

1 MathematiCal FUNCLIONSccveeiiuiiiiiiie ittt
20rdering FUNCLIONSooueoiecie ettt

3 Type Transfer

FUNCLIONS ..ottt e e e e e e e

4 Inter-process COMMUNICALIONcccueeeeriieieiiese e
I] 01U 1= To N LU 0T | SRS

51The eol n
52The read

and eof fUNCLIONSccocvecice e
and readl N Proceduresccceveeiieeesecce e

53The witeand writel nprocedures.......ccocoviiveveececceceese e

6 Timing
7 Miscellaneous

contents

59
59
60
61
62
63

63
64
64
66

66
67
68
69
70
70
70
70
70
70
70
71
71
71
71
71
71
72
72
72
73
73
73
73
74
74
74
75

7.1 The r andomfunction
7.2The priority procedure
8 APPENDIX E - COLLECTED SYNTAX

REFERENCES

Pascal-FC LRM

contents

75
75
76
98

