
xternal devices
that are used to

expand a microcon-
troller’s internal

resources are generally available with
a parallel interface but a serial inter-
face is becoming more popular. There
is a wide range of such devices,
including EEPROMs, display con-
trollers, real-time clocks, A/D and
D/A converters, and I/O expanders.
Serial thermal sensors, directly con-
nectable to a microcontroller, are
offered as well. Serially accessed
devices require less wiring and space
on printed circuit boards than parallel
ones. Thus, printed circuit boards and
connectors can be simpler and small-
er. Reduced wiring also increases reli-
ability of a system. In some cases,
such microcontrollers without an
external address and data bus, the
application of serial devices enables
interaction between the microcon-
troller and the outside world.

Most serial devices are equipped
with a synchronous interface for
which they require separate signal
lines for transferring data and clock

www.circuitcellar.com/online CIRCUIT CELLAR® ONLINE March 2002 1

FEATURE
ARTICLE

Thanks to the possibil-
ity of all-software
implementation of the
I2C protocol, micro-
controllers can com-
municate with I2C
devices. With this arti-
cle, Dariusz presents
us with an example
implementation of the
Standard mode of the
I2C protocol for the
popular 8031 micro-
controller.

information. The clock, called the
master, must be supplied by a micro-
controller. This clock frequency does
not have to be constant. The master
also initiates communication with
serial devices called slaves. Often,
multiple slaves can use common data
and clock lines, with each slave hav-
ing its own select line or address.

One of the most popular synchro-
nous interfaces is the inter-integrated
circuit (I2C), which was developed by
Philips nearly 20 years ago. I2C is a
low-bandwidth, short-distance, two-
wire interface that was originally
designed to enable communication
between devices inside a TV. Now,
I2C interface is implemented in over
1000 different devices. [1] Some
microcontrollers have a hardware I2C
controller built-in (e.g., the P8xC528
from Philips and the PIC16C6x from
Microchip). An all-software imple-
mentation of I2C protocol is also pos-
sible. Thanks to this method, any
microcontroller can communicate
with I2C devices. In this article, I’d
like to present such an implementa-
tion for the popular 8031 microcon-
troller.

THE BUS
The I2C interface is modest in its

hardware resource requirements,
because only a single pair of signal
lines is needed: serial data (SDA) and
serial clock (SCL) (see Figure 1). Both
lines are bidirectional and must be
connected to a positive supply voltage
via pull-up resistors. The SDA and
SCL pins of each device also must
have an open drain or open collector
in order to perform the wired AND
function. Data can be transferred at a
rate of up to 100 kbps in Standard
mode, up to 400 kbps in Fast mode,
and up to 3.4 Mbps in High-Speed
mode. Each slave on the bus is identi-
fied by a unique address.

In Standard mode, 7-bit addressing
is used. In other modes, slaves can
have 7- or 10-bit addresses. The num-

Dariusz Caban

Software Implementation of
the I2C Protocol

e

2 March 2002 CIRCUIT CELLAR® ONLINE www.circuitcellar.com/online

ber of devices that can be connected
to the same bus is limited by the
maximum bus capacitance of 400 pF.

The I2C bus can be controlled by
more than one master. If two or more
masters simultaneously initiate data
transfer, collision is detected and an
arbitration procedure is performed.
The arbitration doesn’t cause data cor-
ruption, however, most system
designs include only one master.

Only the master generates the
clock, but transmission speed can be
adjusted to the internal operating rate
of the addressed slave. This adjust-
ment is made by clock stretching, in
which the slave keeps the SCL pulled
low until it is ready to continue.

THE PROTOCOL
The I2C protocol is

level-sensitive. The data
must be stable when SCL
is high. Except for two
situations, the state of the
SDA line can only change
when SCL is low. The
exceptions have special
meanings (see Figure 2). A
1-to-0 transition signals
the beginning of a transfer
and is termed as a start

condition. A 0-to-1 transition signals
the end of a transfer and is termed as
a stop condition. The data is trans-
ferred in bytes, with the most signifi-
cant bit sent first. Note that the byte
transfer requires nine clock pulses.
The transfer of a byte’s bits takes
eight pulses, and the ninth is used for
acknowledgment. Between start and
stop conditions, an unrestricted num-
ber of bytes can be transferred.

After a start condition, the byte
containing the slave address (or part
of the address, when 10-bit addressing
is used) and a data direction bit is
always sent first (see Figure 3). A start
condition can be repeated without
first generating a stop condition. This
is used to change transfer direction or
to address another slave. If there is no

acknowledgment from the
addressed slave (because it is
not connected or performs
some internal operation), the
master can abort the transfer.
Next, if the slave is being
written to, it must acknowl-
edge each byte received. Lack
of acknowledgment indicates
that it cannot accept data.
While reading from the slave,
the master is also obliged to
acknowledge each byte,
except the last byte.

The master can communi-
cate with the slave according
to several scenarios called
transfer formats. For exam-
ple, there are three possible
formats when 7-bit address-
ing is used. Their descrip-
tions can be found in “The
I2C-Bus Specification—
Version 2.1,” by Philips. [1]

THE PROCESS
The I2C protocol does not have to

be implemented in hardware.
Software implementation is also pos-
sible, because the protocol is forgiving
with regard to timing accuracy. And,
any of the microcontroller’s general-
purpose I/O lines can be used as I2C
lines. This approach is useful when a
system design includes only a single
master.

As stated earlier, such designs are
most frequent. I have implemented
the I2C protocol for the 8031 micro-
controller, using only Standard mode.
The source code was written in C-51.
The use of a high-level programming
language shortened development time
considerably. It also simplifies
changes and adaptation of the code to
microcontrollers with different archi-

tectures.
Listing 1 presents

functions perform-
ing basic operations
of the I2C protocol.
The functions given
require 135 bytes of
code memory and
only a few bytes of
internal data mem-
ory, if a compact
memory model is

Figure 1—Here you can see how the I2C
devices connect to the microcontroller.

Figure 2—This diagram shows the issuing of the start and stop conditions and how the byte trans-
fer on the I2C bus is performed.

MSB

Change of
data allowed

....... LSB

.......

SDA

SCL

START
condition

Data line
stable;

data valid

1 2 8 9

Clock pulse for
acknowledgement

STOP
condition

www.circuitcellar.com/online CIRCUIT CELLAR® ONLINE March 2002 3

set. In order to guarantee appropriate
timing characteristics of signals, NOP
instructions are used. An 8031 micro-
controller executes a NOP instruction
in one machine cycle. [2] One cycle
takes 12/fosc s, where fosc is the oscilla-
tor frequency. The number of NOP
instructions in the given functions
was selected based on an oscillator
frequency of 12 MHz.

Now, let’s use the set of functions
given in Listing 1 to implement oper-
ations on the Atmel AT24C02 device
you saw in Figure 1. This device sup-
ports 256 bytes of EEPROM. The
slave address of the AT24C02 consists
of a 4-bit type identifier (1010), fol-
lowed by a 3-bit sequence, which cor-
responds to logic levels on the A2,
A1, and A0 inputs. This way, up to
eight EEPROMs can be addressed on
the same I2C bus. The AT24C02 also
has a write protect (WP) pin that pro-
vides hardware data protection.

The following operations are
allowed: byte write, page write,
acknowledge polling, current address
read, random read, and sequential
read. Listings 2 and 3 present example
functions performing byte write and
sequential read operations, respective-
ly. It was assumed that a single EEP-
ROM exists in the system.

When the microcontroller termi-
nates the write sequence with a stop
condition, the EEPROM enters an
internally timed write cycle that, for
the AT24C02, can last up to 10 ms.
During the write cycle, the EEPROM
is busy and ignores all communica-
tions on the I2C bus. The ready/busy
status of the device is determined by
using an acknowledge polling opera-
tion. This operation involves issuing
of a start condition followed by the
slave address byte. If the EEPROM
does not acknowledge, the cycle is
still in progress. If it does, the cycle
has completed. Listing 4 presents the
function performing the acknowledge-
ment of the polling operation and its
possible use.

The sequential read operation is a
convenient way to get multi-byte val-
ues stored in the EEPROM. In the
function presented in Listing 3, this
operation is initiated by a write
sequence to load the EEPROM’s inter-

Listing 1—By using these functions, data transfer via an I2C bus can be performed, assuming only a sin-
gle master exists.

#define uchar unsigned char

#define SDA P1.0 /* microcontroller's I/O lines */
#define SCL P1.1 /* assigned to I2C lines */

/**
Issuing of START condition.

**/

void start(void)
{

SDA = SCL = 1;
SDA = 0;
_opc(0); /* it places NOP instruction */
_opc(0); /* into executable code */
_opc(0);
_opc(0);
_opc(0);
SCL = 0;

}

/**
Issuing of STOP condition.

**/

void stop(void)
{

SDA = 0;
SCL = 1;
_opc(0);
_opc(0);
_opc(0);
_opc(0);
_opc(0);
SDA = 1;

}

/**
Clock pulse generation. The function returns data
or acknowledgment bit.

**/

bit clock(void)
{
bit level; /* state of SDA line */

SCL = 1;
_opc(0);
while(!SCL); /* if a pulse was stretched */
_opc(0);
_opc(0);
_opc(0);
level = SDA;
_opc(0);
_opc(0);
SCL = 0;
return(level);

}

/**
Writing a byte to a slave, with most significant
bit first. The function returns acknowledgment bit.

**/

bit write(uchar byte)
{

Continued

4 March 2002 CIRCUIT CELLAR® ONLINE www.circuitcellar.com/online

nal address counter with the initial
value. Then the master issues a start
condition again, sends a slave address
with the data direction bit high, and
begins reading. After the master
receives a byte and acknowledges it,
the EEPROM increments the address
counter and sends a successive byte.
The EEPROM continues sending until
the master does not acknowledge and
generates a stop condition. Listing 5
shows an example of using the EEP-
ROM_sequential_read() function.

CONCLUSIONS
Compared to other competing syn-

chronous serial interfaces, Microwire
from National Semiconductor and SPI
from Motorola, I2C has the least hard-
ware requirements. Only two I/O pins
of the microcontroller are needed to
communicate with multiple slaves,
because each slave is identified by its
unique address, not by a separate
select line. Also, because the I2C pro-
tocol is level-sensitive, its noise
immunity is likely to be higher than
in edge-sensitive competitors. And,
unlike Microwire and SPI, I2C slaves
provide feedback to the master, which
indicates whether or not transmission
was successful. Until recently, the I2C
protocol was significantly slower, but
in 1999 a high-speed mode was intro-
duced, which offered rates up to 3.4
Mbps.

In this article, I have presented an
example all-software implementation
of the Standard mode of the I2C proto-
col. The source code was written in a
high-level language, and you can easi-
ly see that it is not complicated.
Although the compiler used was
rather old [2], small-size executable

REFERNCES
[1] Philips Semiconductors, “The

I2C-Bus Specification—
Version 2.1,” January 2000,
http://www.semiconductors.ph
ilips.com/acrobat/various/i2c_
bus_specification_3.pdf.

[2] Intel Co., “Embedded
Controller Handbook,” 1987.

A6 A0 R/*W

Slave address

1 1 1 1 0 A9 A8 R/*W

7-bit Addressing

10-bit Addressing

First seven bits of slave address

R/*W—data direction bit
0—Write
1—Read

Figure 3—The byte containing all or part of the slave
address and the data direction bit are sent first after a
start condition.

Dariusz Caban completed his studies
at Silesian Technical University in
Gliwice, Poland, where he received
his MS. Since then, he has been work-
ing at the Institute of Theoretical and
Applied Computer Science, Polish
Academy of Sciences (IITiS PAN) and
cooperates with manufacturers of
measurement and control equipment.
He holds a Ph.D. and specializes in
programming of microcontrollers,
mainly in high-level languages. You
may reach him at

uchar mask = 0x80;

while(mask)
{

if (byte & mask)
SDA = 1;

else
SDA = 0;

clock();
mask >>= 1; /* next bit to send */

}
SDA = 1; /* releasing of the line */
return(clock()); /* a slave should acknowledge */

}

/**
Reading byte from a slave, with most significant
bit first. The parameter indicates, whether to
acknowledge (1) or not (0).

**/

uchar read(bit acknowledgment)
{
uchar mask = 0x80,

byte = 0x00;

while(mask)
{

if (clock())
byte |= mask;

mask >>= 1; /* next bit to receive */
}
if (acknowledgment)
{

SDA = 0;
clock();
SDA = 1;

}
else
{

SDA = 1;
clock();

}
return(byte);

}

Listing 1— continued

code was produced. I darek1@mail.iitis.gliwice.pl.

www.circuitcellar.com/online CIRCUIT CELLAR® ONLINE March 2002 5

SOURCES
C-51
Archimedes
+38121618243
Fax: +38121619308
www.archimedes.co.yu

AT24C02 Two-wire serial EEP-
ROM, AT89Cx051 80C31 micro-
controller
Atmel Corp.
(408) 441-0311
www.atmel.com

PIC16C6x 8-bit CMOS
Microcontroller
Microchip Technology Inc.
(978) 692-3848
Fax: (978) 692-3821
www.microchip.com

P80C528, P83C528 8-bit
Microcontrollers
Philips Semiconductors
(800) 326-6586
(212) 536-0500
Fax: (212) 536-0559
www.semiconductors.philips.com

SOFTWARE
The source code is available for
download in the html format of
the article.

Circuit Cellar, the Magazine for Computer
Applications. Reprinted by permission.

For subscription information,
call (860) 875-2199, or www.circuitcellar.com.
Entire contents copyright ©2001 Circuit Cellar

Inc. All rights reserved.

Listing 2—This function writes bytes to the EEPROM cell located at a given
address. The function returns the status of operation.

#define EEPROM 0xAE /* slave address, data direction
bit = 0 */

bit EEPROM_byte_write(uchar address, uchar byte)
{
bit status;

status = 0; /* failure by default */
start();
if (!write(EEPROM)) /* write operation */

if (!write(address)) /* byte address */
if (!write(byte))

status = 1; /* success */
stop();
return(status);

}

Listing 3—The bytes are placed in memory, starting from the block address.

#define NO_ACK 0
#define ACK 1

bit EEPROM_sequential_read(uchar *block, uchar address,
uchar size)

{
bit status;

status = 0; /* failure by default */
start();
if (!write(EEPROM)) /* write operation */

if (!write(address)) /* initial address */
{

start();
if (!write(EEPROM | 0x01)) /* read operation */
{

while(size--)
*block++ = read(size ? ACK : NO_ACK);

status = 1; /* success */
}

}
stop();
return(status);

}

6 March 2002 CIRCUIT CELLAR® ONLINE www.circuitcellar.com/online

Listing 4—The first function determines the ready/busy status of the EEPROM. If you assume that after
the write sequence a program execution may be suspended until the write cycle is complete, the EEP-
ROM_busy() function can be used.

bit EEPROM_acknowledge_polling(void)
{
bit status;

start();
status = write(EEPROM);
stop();
return(status); /* if 1, the write cycle is in progress */

}

void EEPROM_busy(void)
{

while(EEPROM_acknowledge_polling())
delay(1,164); /* about 1 msec */

}

Listing 5—This example shows how to restore float variables within the contents of the EEPROM.

#define T1_SETP_ADDR 0 /* starting locations of set point */
#define T2_SETP_ADDR 4 /* values of temperatures */

:

/**
Global variables.

**/

float t1_setp, /* temperatures� set points */
t2_setp;

:

/**
Initialization of the system.

**/

void initialization(void)
{

:
EEPROM_sequential_read(&t1_setp,T1_SETP_ADDR,4);
EEPROM_sequential_read(&t2_setp,T2_SETP_ADDR,4);

:
}

